广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (06): 1-9.doi: 10.12052/gdutxb.220123
• 综合研究 • 下一篇
刘洪伟, 林伟振, 温展明, 陈燕君, 易闽琦
Liu Hong-wei, Lin Wei-zhen, Wen Zhan-ming, Chen Yan-jun, Yi Min-qi
摘要: 识别线上消费者群体评论的情感倾向,有助于优化平台推荐算法及提升服务质量,如何有效识别消费者情感倾向,是一个热门的研究选题。本文基于多头自注意力机制的双向长短期机制提出MABM(Multi-head self-Attention and Bidirectional long-short term Memory neural network)情感倾向识别模型,采用知名电影点评网站豆瓣点评在线评论数据作为语料,使用文本挖掘工具对数据进行预处理,以10个机器学习模型和4个深度学习模型为对照组,按照8:2划分训练集和测试集来验证对比评估MABM模型的有效性和稳健性。两组对比实验结果发现,深度神经网络模型预测效果整体优于机器学习模型,并且以MABM模型的分类效果最佳。MABM模型能够有效识别消费者评论的情感倾向,使推荐算法能有效结合消费者的心理行为,以获得更显著的营销效果。
中图分类号:
[1] SALINCA A. Business reviews classification using sentiment analysis[C]//2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing. Timisoara: IEEE, 2015: 247-250. [2] 易闽琦, 刘洪伟, 高鸿铭. 电商平台产品共同购买网络的影响因素研究[J]. 广东工业大学学报, 2022, 39(3): 16-24. YI M Q, LIU H W, GAO H M. Research on the factors influencing the co-purchase network of products on e-commerce platforms [J]. Journal of Guangdong University of Technology, 2022, 39(3): 16-24. [3] 张舒, 莫赞, 柳建华, 等. 基于NWD集成算法的多粒度微博用户兴趣画像构建[J]. 广东工业大学学报, 2020, 37(4): 42-50. ZHANG S, MO Z, LIU J H, et al. Multi-granularity microblog user interest portrait construction based on NWD integrated algorithm [J]. Journal of Guangdong University of Technology, 2020, 37(4): 42-50. [4] 刘洪伟, 詹明君, 高鸿铭, 等. 基于消费者行为流视域的产品竞争市场结构分析[J]. 广东工业大学学报, 2021, 38(2): 26-33. LIU H W, ZHAN M J, GAO H M, et al. A product competitive market structure analysis based on consumer behavioral stream [J]. Journal of Guangdong University of Technology, 2021, 38(2): 26-33. [5] KRUMM J, DAVIES N, NARAYANASWAMI C. User-generated content [J]. IEEE Pervasive Computing, 2008, 7(4): 10-11. [6] DAUGHERTY T, EASTIN M S, BRIGHT L. Exploring consumer motivations for creating user-generated content [J]. Journal of Interactive Advertising, 2008, 8(2): 16-25. [7] YASEN M, TEDMORI S. Movies reviews sentiment analysis and classification[C]// BOWYER K. 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT) . Amman: IEEE, 2019: 860-865. [8] MISHNE G, GLANCE N S. Predicting movie sales from blogger sentiment[C]// NICOLOV N. AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs. California: AAAI Spring Symposium. 2006: 155-158. [9] PANG B, LEE L. Opinion mining and sentiment analysis[J]. Foundations and Trends in Information Retrieval, 2008, 2(1-2) : 1-135. [10] VINODHINI G, CHANDRASEKARAN R M. Sentiment analysis and opinion mining: a survey [J]. International Journal, 2012, 2(6): 282-292. [11] MAAS A, DALY R E, PHAM P T, et al. Learning word vectors for sentiment analysis[C]// EISNER J. Human Language Technologies. Oregon: Association for Computational Linguistics. 2011: 142-150. [12] Al-SAQQA S, AWAJAN A. The use of word2vec model in sentiment analysis: a survey[C]// AWAJAN A. Robotics and Control. New York: Association for Computing Machinery. 2019: 39-43. [13] VO N, HAYS J. Generalization in metric learning: should the embedding layer be embedding layer? [C]// BOWYER K. 2019 IEEE Winter Conference on Applications of Computer Vision (WACV) . USA: IEEE, 2019: 589-598. [14] WANG Y, HUANG M, ZHU X, et al. Attention-based LSTM for aspect-level sentiment classification[C]//JIAN S. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. USA: ACM. 2016: 606-615. [15] LI L, YANG L, ZENG Y. Improving sentiment classification of restaurant reviews with attention-based Bi-GRU neural network [J]. Symmetry, 2021, 13(8): 1517. [16] GAO Z J, FENG A, SONG X Y, et al. Target-dependent sentiment classification with BERT [J]. IEEE Access, 2019, 7: 154290-154299. [17] 杜嘉晨. 社交媒体文本情感分析及对话生成研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. [18] 王颖洁, 朱久祺, 汪祖民, 等. 自然语言处理在文本情感分析领域应用综述[J]. 计算机应用, 2022, 42(4): 1011-1020. WANG Y J, ZHU J Q, WANG Z M, et al. Review of applications of natural language processing in text sentiment analysis [J]. Journal of Computer Applications, 2022, 42(4): 1011-1020. [19] 罗玉萍, 潘庆先, 刘丽娜, 等. 基于情感挖掘的学生评教系统设计及其应用[J]. 中国电化教育, 2018(4): 91-95. LUO Y P, PAN Q X, LIU L N, et al. Design and application of teaching evaluation system based on sentiment mining [J]. China Educational Technology, 2018(4): 91-95. [20] 周知, 王春迎, 朱佳丽. 基于超短评论的图书领域情感词典构建研究[J]. 情报理论与实践, 2021, 44(9): 183-189. ZHOU Z, WANG C Y, ZHU J L. Research on the construction of sentiment lexicon in book field based on extreme short reviews [J]. Information Studies:Theory & Application, 2021, 44(9): 183-189. [21] 阳林. 情感词权值研究及在情感极性分析中的应用[J]. 计算机应用, 2015, 35(S2): 125-127. YANG L. Emotional term weight research and application to emotional polarity analysis [J]. Journal of Computer Applications, 2015, 35(S2): 125-127. [22] 邱禹臣. 基于深度学习的猫眼电影评论情感分析[D]. 长春: 吉林大学, 2021. [23] 邓君, 孙绍丹, 王阮, 等. 基于Word2Vec和SVM的微博舆情情感演化分析[J]. 情报理论与实践, 2020, 43(8): 112-119. DENG J, SUN S D, WANG R, et al. Evolution analysis of weibo public opinion emotion based on Word2Vec and SVM [J]. Information Studies:Theory & Application, 2020, 43(8): 112-119. [24] 余传明, 原赛, 王峰, 等. 大数据环境下文本情感分析算法的规模适配研究: 以Twitter为数据源[J]. 图书情报工作, 2019, 63(4): 101-111. YU C M, YUAN S, WANG F, et al. Research on scale adaptation of text sentiment analysis algorithm in big data environment: using twitter as data source [J]. Library and Information Service, 2019, 63(4): 101-111. [25] 何野, 杨会成, 潘玥, 等. 基于改进CNN的文本情感分析[J]. 平顶山学院学报, 2021, 36(5): 59-62. HE Y, YANG H C, PAN Y, et al. Study on the text sentiment analysis based on improved CNN [J]. Journal of Pingdingshan University, 2021, 36(5): 59-62. [26] PANG B, LEE L, VAITHYANATHAN S. Thumbs up? Sentiment classification using machine learning technique [EB/OL]. (2002-05-28) [2022-08-26]. https://doi.org/10.48550/arXiv.cs/0205070. [27] ALHARBI N M, ALGHAMDI N S, ALKHAMMASH E H, et al. Evaluation of sentiment analysis via word embedding and RNN variants for amazon online reviews [J]. Mathematical Problems in Engineering, 2021: 532-543. [28] 洪文兴, 杞坚玮, 王玮玮, 等. 基于公共特征空间的自适应情感分类[J]. 天津大学学报(自然科学与工程技术版), 2019, 52(6): 631-637. HONG W X, QI J W, WANG W W, et al. Domain adaptation with common feature space for sentiment classification [J]. Journal of Tianjin University (Science and Technology), 2019, 52(6): 631-637. [29] 胡艳丽, 童谭骞, 张啸宇, 等. 融入自注意力机制的深度学习情感分析方法[J]. 计算机科学, 2022, 49(1): 252-258. HU Y L, TONG T Q, ZHANG X Y, et al. Self-attention based BGRU and CNN for sentiment analysis [J]. Computer Science, 2022, 49(1): 252-258. [30] 朱丽, 杨青, 吴涛, 等. 基于CNN和Bi-LSTM的脑电波情感分析[J]. 应用科学学报, 2022, 40(1): 1-12. ZHU L, YANG Q, WU T, et al. Emotional analysis of brain waves based on CNN and Bi-LSTM [J]. Journal of Applied Sciences, 2022, 40(1): 1-12. [31] 钟佳娃, 刘巍, 王思丽, 等. 文本情感分析方法及应用综述[J]. 数据分析与知识发现, 2021, 5(6): 1-13. ZHONG J W, LIU W, WANG S L, et al. Review of methods and applications of text sentiment analysis [J]. Data Analysis and Knowledge Discovery, 2021, 5(6): 1-13. [32] YU Y, SI X, HU C, et al. A review of recurrent neural networks: LSTM cells and network architectures [J]. Neural Computation, 2019, 31(7): 1235-1270. [33] HUANG Z, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging [EB/OL]. (2015-08-09) [2022-08-26]. https://arxiv.org/abs/1508.01991. [34] GRAVES A, SCHMIDHUBER J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures [J]. Neural Networks, 2005, 18(5-6): 602-610. [35] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// VASWANI A . Advances in Neural Information Processing Systems. California: NIPS, 2017: 6000-6010. [36] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding [EB/OL]. (2019-05-24) [2022-08-26]. https://arxiv.org/abs/1810.04805. [37] HUANG C Z A, VASWANI A, USZKOREIT J, et al. Music transformer [EB/OL]. (2018-12-12) [2022-08-26]. https://doi.org/10.48550/arXiv.1809.04281. [38] HAN K, WANG Y, CHEN H, et al. A survey on vision transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022. https://ieeexplore.ieee.org/abstract/document/9716741. DOI: 10.1109/TPAMI.2022.3152247. |
[1] | 吴俊贤, 何元烈. 基于通道注意力的自监督深度估计方法[J]. 广东工业大学学报, 2023, 40(02): 22-29. |
[2] | 刘冬宁, 王子奇, 曾艳姣, 文福燕, 王洋. 基于复合编码特征LSTM的基因甲基化位点预测方法[J]. 广东工业大学学报, 2023, 40(01): 1-9. |
[3] | 徐伟锋, 蔡述庭, 熊晓明. 基于深度特征的单目视觉惯导里程计[J]. 广东工业大学学报, 2023, 40(01): 56-60,76. |
[4] | 章云, 王晓东. 基于受限样本的深度学习综述与思考[J]. 广东工业大学学报, 2022, 39(05): 1-8. |
[5] | 郑佳碧, 杨振国, 刘文印. 基于细粒度混杂平衡的营销效果评估方法[J]. 广东工业大学学报, 2022, 39(02): 55-61. |
[6] | Gary Yen, 栗波, 谢胜利. 地球流体动力学模型恢复的长短期记忆网络渐进优化方法[J]. 广东工业大学学报, 2021, 38(06): 1-8. |
[7] | 赖峻, 刘震宇, 刘圣海. 基于全局数据混洗的小样本数据预测方法[J]. 广东工业大学学报, 2021, 38(03): 17-21. |
[8] | 谭有新, 滕少华. 短文本特征的组合加权方法[J]. 广东工业大学学报, 2020, 37(05): 51-61. |
[9] | 岑仕杰, 何元烈, 陈小聪. 结合注意力与无监督深度学习的单目深度估计[J]. 广东工业大学学报, 2020, 37(04): 35-41. |
[10] | 曾碧, 任万灵, 陈云华. 基于CycleGAN的非配对人脸图片光照归一化方法[J]. 广东工业大学学报, 2018, 35(05): 11-19. |
[11] | 饶东宁, 黄思宏. 基于THUCTC的金融语料情感分析模型优化[J]. 广东工业大学学报, 2018, 35(03): 37-42. |
[12] | 陈旭, 张军, 陈文伟, 李硕豪. 卷积网络深度学习算法与实例[J]. 广东工业大学学报, 2017, 34(06): 20-26. |
[13] | 刘震宇, 李嘉俊, 王昆. 一种基于深度自编码器的指纹匹配定位方法[J]. 广东工业大学学报, 2017, 34(05): 15-21. |
[14] | 陈炳丰, 郝志峰, 蔡瑞初, 温雯, 王丽娟, 黄浩, 蔡晓凤. 面向汽车评论的细粒度情感分析方法研究[J]. 广东工业大学学报, 2017, 34(03): 8-14. |
[15] | 梁礼欣, 郝志峰, 蔡瑞初, 温雯. 基于混合高斯分布伪样本生成的情感分析方法[J]. 广东工业大学学报, 2016, 33(06): 85-90. |
|