广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (06): 1-9.doi: 10.12052/gdutxb.220123

• 综合研究 •    下一篇

基于MABM的消费者情感倾向识别模型——以电影评论为例

刘洪伟, 林伟振, 温展明, 陈燕君, 易闽琦   

  1. 广东工业大学 管理学院, 广东 广州 510520
  • 收稿日期:2022-07-20 出版日期:2022-11-10 发布日期:2022-11-25
  • 通信作者: 温展明(1992-),男,讲师,博士研究生,主要研究方向为信息系统与消费者决策行为,E-mail:wenzhanming@gdut.edu.cn
  • 作者简介:刘洪伟(1962-),男,教授,博士,博士生导师,主要研究方向为数据挖掘与消费者行为
  • 基金资助:
    国家自然科学基金资助项目(71671048);全国教育科学规划教育部青年课题(EIA210424);广东省哲学社会科学规划2022年度青年项目(GD22YJY13);广州市哲学社科规划2022年度课题(2022GZQN26)

A MABM-based Model for Identifying Consumers' Sentiment Polarity―Taking Movie Reviews as an Example

Liu Hong-wei, Lin Wei-zhen, Wen Zhan-ming, Chen Yan-jun, Yi Min-qi   

  1. School of Management, Guangdong University of Technology, Guangzhou 510520, China
  • Received:2022-07-20 Online:2022-11-10 Published:2022-11-25

摘要: 识别线上消费者群体评论的情感倾向,有助于优化平台推荐算法及提升服务质量,如何有效识别消费者情感倾向,是一个热门的研究选题。本文基于多头自注意力机制的双向长短期机制提出MABM(Multi-head self-Attention and Bidirectional long-short term Memory neural network)情感倾向识别模型,采用知名电影点评网站豆瓣点评在线评论数据作为语料,使用文本挖掘工具对数据进行预处理,以10个机器学习模型和4个深度学习模型为对照组,按照8:2划分训练集和测试集来验证对比评估MABM模型的有效性和稳健性。两组对比实验结果发现,深度神经网络模型预测效果整体优于机器学习模型,并且以MABM模型的分类效果最佳。MABM模型能够有效识别消费者评论的情感倾向,使推荐算法能有效结合消费者的心理行为,以获得更显著的营销效果。

关键词: 情感分析, 深度学习, 多头自注意力机制, 双向长短期记忆神经网络

Abstract: Identifying the sentiment polarity of movie customer group reviews may inspire the platform to optimize movie recommendation algorithms and improve services and provide suggestions for consumers' movie choices. A MABM sentiment polarity recognition model is proposed based on the multi-head self-attention bidirectional long-short term mechanism. Using the online review data of the well-known movie review website Douban Review as the corpus, text mining tools are used to pre-process the data. Then dividing the data into training and test sets according to 8:2, and using 10 machine learning models and 4 deep learning models as the control group, the effectiveness and robustness of the MABM model are evaluated by cross-validation and test set validation comparison. In the two sets of comparison experiments, it is found that the deep neural network model predicts overall better than the machine learning model, and the MABM model used as the control set has the best classification results. The MABM model can effectively identify the sentiment polarity of consumer reviews, providing management insights and algorithm improvement suggestions for movie recommendation platforms.

Key words: sentiment analysis, deep learning, multihead self-attention mechanism, bidirectional long-short term memory neural network

中图分类号: 

  • TP319.4
[1] SALINCA A. Business reviews classification using sentiment analysis[C]//2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing. Timisoara: IEEE, 2015: 247-250.
[2] 易闽琦, 刘洪伟, 高鸿铭. 电商平台产品共同购买网络的影响因素研究[J]. 广东工业大学学报, 2022, 39(3): 16-24.
YI M Q, LIU H W, GAO H M. Research on the factors influencing the co-purchase network of products on e-commerce platforms [J]. Journal of Guangdong University of Technology, 2022, 39(3): 16-24.
[3] 张舒, 莫赞, 柳建华, 等. 基于NWD集成算法的多粒度微博用户兴趣画像构建[J]. 广东工业大学学报, 2020, 37(4): 42-50.
ZHANG S, MO Z, LIU J H, et al. Multi-granularity microblog user interest portrait construction based on NWD integrated algorithm [J]. Journal of Guangdong University of Technology, 2020, 37(4): 42-50.
[4] 刘洪伟, 詹明君, 高鸿铭, 等. 基于消费者行为流视域的产品竞争市场结构分析[J]. 广东工业大学学报, 2021, 38(2): 26-33.
LIU H W, ZHAN M J, GAO H M, et al. A product competitive market structure analysis based on consumer behavioral stream [J]. Journal of Guangdong University of Technology, 2021, 38(2): 26-33.
[5] KRUMM J, DAVIES N, NARAYANASWAMI C. User-generated content [J]. IEEE Pervasive Computing, 2008, 7(4): 10-11.
[6] DAUGHERTY T, EASTIN M S, BRIGHT L. Exploring consumer motivations for creating user-generated content [J]. Journal of Interactive Advertising, 2008, 8(2): 16-25.
[7] YASEN M, TEDMORI S. Movies reviews sentiment analysis and classification[C]// BOWYER K. 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT) . Amman: IEEE, 2019: 860-865.
[8] MISHNE G, GLANCE N S. Predicting movie sales from blogger sentiment[C]// NICOLOV N. AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs. California: AAAI Spring Symposium. 2006: 155-158.
[9] PANG B, LEE L. Opinion mining and sentiment analysis[J]. Foundations and Trends in Information Retrieval, 2008, 2(1-2) : 1-135.
[10] VINODHINI G, CHANDRASEKARAN R M. Sentiment analysis and opinion mining: a survey [J]. International Journal, 2012, 2(6): 282-292.
[11] MAAS A, DALY R E, PHAM P T, et al. Learning word vectors for sentiment analysis[C]// EISNER J. Human Language Technologies. Oregon: Association for Computational Linguistics. 2011: 142-150.
[12] Al-SAQQA S, AWAJAN A. The use of word2vec model in sentiment analysis: a survey[C]// AWAJAN A. Robotics and Control. New York: Association for Computing Machinery. 2019: 39-43.
[13] VO N, HAYS J. Generalization in metric learning: should the embedding layer be embedding layer? [C]// BOWYER K. 2019 IEEE Winter Conference on Applications of Computer Vision (WACV) . USA: IEEE, 2019: 589-598.
[14] WANG Y, HUANG M, ZHU X, et al. Attention-based LSTM for aspect-level sentiment classification[C]//JIAN S. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. USA: ACM. 2016: 606-615.
[15] LI L, YANG L, ZENG Y. Improving sentiment classification of restaurant reviews with attention-based Bi-GRU neural network [J]. Symmetry, 2021, 13(8): 1517.
[16] GAO Z J, FENG A, SONG X Y, et al. Target-dependent sentiment classification with BERT [J]. IEEE Access, 2019, 7: 154290-154299.
[17] 杜嘉晨. 社交媒体文本情感分析及对话生成研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
[18] 王颖洁, 朱久祺, 汪祖民, 等. 自然语言处理在文本情感分析领域应用综述[J]. 计算机应用, 2022, 42(4): 1011-1020.
WANG Y J, ZHU J Q, WANG Z M, et al. Review of applications of natural language processing in text sentiment analysis [J]. Journal of Computer Applications, 2022, 42(4): 1011-1020.
[19] 罗玉萍, 潘庆先, 刘丽娜, 等. 基于情感挖掘的学生评教系统设计及其应用[J]. 中国电化教育, 2018(4): 91-95.
LUO Y P, PAN Q X, LIU L N, et al. Design and application of teaching evaluation system based on sentiment mining [J]. China Educational Technology, 2018(4): 91-95.
[20] 周知, 王春迎, 朱佳丽. 基于超短评论的图书领域情感词典构建研究[J]. 情报理论与实践, 2021, 44(9): 183-189.
ZHOU Z, WANG C Y, ZHU J L. Research on the construction of sentiment lexicon in book field based on extreme short reviews [J]. Information Studies:Theory & Application, 2021, 44(9): 183-189.
[21] 阳林. 情感词权值研究及在情感极性分析中的应用[J]. 计算机应用, 2015, 35(S2): 125-127.
YANG L. Emotional term weight research and application to emotional polarity analysis [J]. Journal of Computer Applications, 2015, 35(S2): 125-127.
[22] 邱禹臣. 基于深度学习的猫眼电影评论情感分析[D]. 长春: 吉林大学, 2021.
[23] 邓君, 孙绍丹, 王阮, 等. 基于Word2Vec和SVM的微博舆情情感演化分析[J]. 情报理论与实践, 2020, 43(8): 112-119.
DENG J, SUN S D, WANG R, et al. Evolution analysis of weibo public opinion emotion based on Word2Vec and SVM [J]. Information Studies:Theory & Application, 2020, 43(8): 112-119.
[24] 余传明, 原赛, 王峰, 等. 大数据环境下文本情感分析算法的规模适配研究: 以Twitter为数据源[J]. 图书情报工作, 2019, 63(4): 101-111.
YU C M, YUAN S, WANG F, et al. Research on scale adaptation of text sentiment analysis algorithm in big data environment: using twitter as data source [J]. Library and Information Service, 2019, 63(4): 101-111.
[25] 何野, 杨会成, 潘玥, 等. 基于改进CNN的文本情感分析[J]. 平顶山学院学报, 2021, 36(5): 59-62.
HE Y, YANG H C, PAN Y, et al. Study on the text sentiment analysis based on improved CNN [J]. Journal of Pingdingshan University, 2021, 36(5): 59-62.
[26] PANG B, LEE L, VAITHYANATHAN S. Thumbs up? Sentiment classification using machine learning technique [EB/OL]. (2002-05-28) [2022-08-26]. https://doi.org/10.48550/arXiv.cs/0205070.
[27] ALHARBI N M, ALGHAMDI N S, ALKHAMMASH E H, et al. Evaluation of sentiment analysis via word embedding and RNN variants for amazon online reviews [J]. Mathematical Problems in Engineering, 2021: 532-543.
[28] 洪文兴, 杞坚玮, 王玮玮, 等. 基于公共特征空间的自适应情感分类[J]. 天津大学学报(自然科学与工程技术版), 2019, 52(6): 631-637.
HONG W X, QI J W, WANG W W, et al. Domain adaptation with common feature space for sentiment classification [J]. Journal of Tianjin University (Science and Technology), 2019, 52(6): 631-637.
[29] 胡艳丽, 童谭骞, 张啸宇, 等. 融入自注意力机制的深度学习情感分析方法[J]. 计算机科学, 2022, 49(1): 252-258.
HU Y L, TONG T Q, ZHANG X Y, et al. Self-attention based BGRU and CNN for sentiment analysis [J]. Computer Science, 2022, 49(1): 252-258.
[30] 朱丽, 杨青, 吴涛, 等. 基于CNN和Bi-LSTM的脑电波情感分析[J]. 应用科学学报, 2022, 40(1): 1-12.
ZHU L, YANG Q, WU T, et al. Emotional analysis of brain waves based on CNN and Bi-LSTM [J]. Journal of Applied Sciences, 2022, 40(1): 1-12.
[31] 钟佳娃, 刘巍, 王思丽, 等. 文本情感分析方法及应用综述[J]. 数据分析与知识发现, 2021, 5(6): 1-13.
ZHONG J W, LIU W, WANG S L, et al. Review of methods and applications of text sentiment analysis [J]. Data Analysis and Knowledge Discovery, 2021, 5(6): 1-13.
[32] YU Y, SI X, HU C, et al. A review of recurrent neural networks: LSTM cells and network architectures [J]. Neural Computation, 2019, 31(7): 1235-1270.
[33] HUANG Z, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging [EB/OL]. (2015-08-09) [2022-08-26]. https://arxiv.org/abs/1508.01991.
[34] GRAVES A, SCHMIDHUBER J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures [J]. Neural Networks, 2005, 18(5-6): 602-610.
[35] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// VASWANI A . Advances in Neural Information Processing Systems. California: NIPS, 2017: 6000-6010.
[36] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding [EB/OL]. (2019-05-24) [2022-08-26]. https://arxiv.org/abs/1810.04805.
[37] HUANG C Z A, VASWANI A, USZKOREIT J, et al. Music transformer [EB/OL]. (2018-12-12) [2022-08-26]. https://doi.org/10.48550/arXiv.1809.04281.
[38] HAN K, WANG Y, CHEN H, et al. A survey on vision transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022. https://ieeexplore.ieee.org/abstract/document/9716741. DOI: 10.1109/TPAMI.2022.3152247.
[1] 吴俊贤, 何元烈. 基于通道注意力的自监督深度估计方法[J]. 广东工业大学学报, 2023, 40(02): 22-29.
[2] 刘冬宁, 王子奇, 曾艳姣, 文福燕, 王洋. 基于复合编码特征LSTM的基因甲基化位点预测方法[J]. 广东工业大学学报, 2023, 40(01): 1-9.
[3] 徐伟锋, 蔡述庭, 熊晓明. 基于深度特征的单目视觉惯导里程计[J]. 广东工业大学学报, 2023, 40(01): 56-60,76.
[4] 章云, 王晓东. 基于受限样本的深度学习综述与思考[J]. 广东工业大学学报, 2022, 39(05): 1-8.
[5] 郑佳碧, 杨振国, 刘文印. 基于细粒度混杂平衡的营销效果评估方法[J]. 广东工业大学学报, 2022, 39(02): 55-61.
[6] Gary Yen, 栗波, 谢胜利. 地球流体动力学模型恢复的长短期记忆网络渐进优化方法[J]. 广东工业大学学报, 2021, 38(06): 1-8.
[7] 赖峻, 刘震宇, 刘圣海. 基于全局数据混洗的小样本数据预测方法[J]. 广东工业大学学报, 2021, 38(03): 17-21.
[8] 谭有新, 滕少华. 短文本特征的组合加权方法[J]. 广东工业大学学报, 2020, 37(05): 51-61.
[9] 岑仕杰, 何元烈, 陈小聪. 结合注意力与无监督深度学习的单目深度估计[J]. 广东工业大学学报, 2020, 37(04): 35-41.
[10] 曾碧, 任万灵, 陈云华. 基于CycleGAN的非配对人脸图片光照归一化方法[J]. 广东工业大学学报, 2018, 35(05): 11-19.
[11] 饶东宁, 黄思宏. 基于THUCTC的金融语料情感分析模型优化[J]. 广东工业大学学报, 2018, 35(03): 37-42.
[12] 陈旭, 张军, 陈文伟, 李硕豪. 卷积网络深度学习算法与实例[J]. 广东工业大学学报, 2017, 34(06): 20-26.
[13] 刘震宇, 李嘉俊, 王昆. 一种基于深度自编码器的指纹匹配定位方法[J]. 广东工业大学学报, 2017, 34(05): 15-21.
[14] 陈炳丰, 郝志峰, 蔡瑞初, 温雯, 王丽娟, 黄浩, 蔡晓凤. 面向汽车评论的细粒度情感分析方法研究[J]. 广东工业大学学报, 2017, 34(03): 8-14.
[15] 梁礼欣, 郝志峰, 蔡瑞初, 温雯. 基于混合高斯分布伪样本生成的情感分析方法[J]. 广东工业大学学报, 2016, 33(06): 85-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!