广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (06): 26-35.doi: 10.12052/gdutxb.220043

• 综合研究 • 上一篇    下一篇

暧昧厌恶下含衍生品交易的最优投资与再保险策略

朱怀念, 黄思涵, 黄佳怡, 黄永豪   

  1. 广东工业大学 经济学院, 广东 广州, 510520
  • 收稿日期:2022-03-11 出版日期:2022-11-10 发布日期:2022-11-25
  • 作者简介:朱怀念(1985-) ,男,副教授,博士,硕士生导师,主要研究方向为动态博弈理论及应用、保险精算等,E-mail:zhuhuainian@gdut.edu.cn
  • 基金资助:
    广东省自然科学基金资助项目(2018A030313687);广东工业大学大学生创新训练计划项目(xj2022118450913)

Ambiguity Aversion and Optimal Investment and Reinsurance Strategies for Insurers with Derivative Trading

Zhu Huai-nian, Huang Si-han, Huang Jia-yi, Huang Yong-hao   

  1. School of Economics, Guangdong University of Technology, Guangzhou 510520, China
  • Received:2022-03-11 Online:2022-11-10 Published:2022-11-25

摘要: 在允许保险资金投资金融衍生品的情境下,如何通过投资与再保险进行风险管控是保险公司亟需解决的问题之一。假设保险公司决策者具有暧昧厌恶偏好,他们对交易市场中的模型参数存在暧昧性,并旨在寻找鲁棒最优投资与再保险策略。暧昧厌恶型的保险公司一方面允许购买比例再保险来控制索赔风险,另一方面通过在包含衍生品的金融市场中投资来实现财富的保值增值。本文以终端财富期望效用最大化为目标构建了鲁棒优化模型,利用动态规划方法给出了优化问题对应的HJB(Hamilton-Jacobi-Bellman)方程,并通过求解HJB方程得到了最大化指数效用的鲁棒最优投资与再保险策略;最后通过数值示例展示了模型相关参数变动对最优投资与再保险策略的影响。研究表明:考虑模型参数的暧昧性及参与衍生品交易可以显著提高保险公司的效用水平。

关键词: 投资与再保险, 暧昧厌恶, 衍生品, Hamilton-Jacobi-Bellman方程

Abstract: Assume that the investment portfolio includes an derivative,we study the optimal investment and proportional reinsurance strategies for ambiguity averse insurers, who are concerned about the potential model ambiguity and aim to seek the robust optimal investment and reinsurance strategies. The ambiguity-averse insurers are allowed to purchase reinsurance treaty to mitigate individual claim risks; and can invest in a financial market consisting of one risk-free asset, one risky stock and one derivative. The ambiguity-averse insurers assumed to have exponential utility, and we formulate the optimization problem as an utility maximization problem. By applying the dynamic programming approach, we derive the HJB equation for the value function. Meanwhile, we obtain the closed-form solutions to the optimal investment and reinsurance strategies. Finally, we provide some numerical simulations together with sound economic implications. More important, we demonstrate the utility improvement when considering derivative trading and parameter ambiguity, and find that derivative trading can significantly improve utility when return volatility increases.

Key words: investment and reinsurance, ambiguity aversion, derivative, Hamilton-Jacobi-Bellman equation

中图分类号: 

  • F830.59
[1] KNIGHT F. Risk, uncertainty and profit[M]. Boston: Houghton Mifflin, 1921: 37-68.
[2] ELLSBERG D. Risk, ambiguity, and the savage axioms [J]. The Quarterly Journal of Economics, 1961, 75(4): 643-669.
[3] GHIRARDATO P, MACCHERONI F, MARINACCI M. Differentiating ambiguity and ambiguity attitude [J]. Journal of Economic Theory, 2004, 118(2): 133-173.
[4] EPSTEIN L G, JI S. Ambiguous volatility and asset pricing in continuous time [J]. Review of Financial Studies, 2013, 26(7): 1740-1786.
[5] ILLEDITSCH P K. Ambiguous information, portfolio inertia, and excess volatility [J]. Journal of Finance, 2011, 66(6): 2213-2247.
[6] YI B, LI Z, VIENS F G, et al. Robust optimal control for an insurer with reinsurance and investment under Heston’s stochastic volatility model [J]. Insurance:Mathematics and Economics, 2013, 53(3): 601-614.
[7] ZENG Y, LI D, GU A. Robust equilibrium reinsurance-investment strategy for a mean-variance insurer in a model with jumps [J]. Insurance:Mathematics and Economics, 2016, 66: 138-152.
[8] ZHENG X, ZHOU J, SUN Z. Robust optimal portfolio and proportional reinsurance for an insurer under a CEV model [J]. Insurance:Mathematics and Economics, 2016, 67: 77-87.
[9] HUANG Y, OUYANG Y, TANG L, et al. Robust optimal investment and reinsurance problem for the product of the insurer’s and the reinsurer’s utilities [J]. Journal of Computational and Applied Mathematics, 2018, 344: 532-552.
[10] LI D, ZENG Y, YANG H. Robust optimal excess-of-loss reinsurance and investment strategy for an insurer in a model with jumps [J]. Scandinavian Actuarial Journal, 2018, 2018(2): 145-171.
[11] LIU J, PAN J. Dynamic derivative strategies [J]. Journal of Financial Economics, 2003, 69(3): 401-430.
[12] 王蕾, 顾孟迪. 最优再保险与投资决策: 财富最大化和套期保值的选择[J]. 系统管理学报, 2013, 22(6): 783-790.
WANG L, GU M D. Proportional reinsurance and investment strategies: maximizing the terminal wealth and hedging [J]. Journal of Systems & Management, 2013, 22(6): 783-790.
[13] 傅毅, 张寄洲, 周翠. 含有期权的最优投资与比例再保险策略[J]. 系统工程学报, 2015, 30(2): 181-189.
FU Y, ZHANG J Z, ZHOU C. Optimal investment and proportional reinsurance strategy with options [J]. Journal of Systems Engineering, 2015, 30(2): 181-189.
[14] XUE X, WEI P, WENG C. Derivatives trading for insurers [J]. Insurance:Mathematics and Economics, 2019, 84: 40-53.
[15] ESCOBAR M, FERRANDO S, RUBTSOV A. Dynamic derivative strategies with stochastic interest rates and model uncertainty [J]. Journal of Economic Dynamics and Control, 2018, 86: 49-71.
[16] ZENG Y, LI D, CHEN Z, et al. Ambiguity aversion and optimal derivative-based pension investment with stochastic income and volatility [J]. Journal of Economic Dynamics and Control, 2018, 88: 70-103.
[17] 王佩, 陈峥, 张玲. 基于衍生品投资的DC型养老金计划均衡投资策略[J]. 中山大学学报(自然科学版) , 2021, 60(3): 147-158.
WANG P, CEHN Z, ZHANG L. Equilibrium investment strategy for a DC pension plan with derivative trading [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(3): 147-158.
[18] PROMISLOW D S, YOUNG V R. Minimizing the probability of ruin when claims follow Brownian motion with drift [J]. North American Actuarial Journal, 2005, 9(3): 109-128.
[19] MAENHOUT P J. Robust portfolio rules and asset pricing [J]. Review of Financial Studies, 2004, 17(4): 951-983.
[20] PUN C S, WONG H Y. Robust non-zero-sum stochastic differential reinsurance game [J]. Insurance:Mathematics and Economics, 2016, 68: 169-177.
[1] 何锦安, 王蓓, 林家星. 基于活跃专家意见的在线投资组合策略[J]. 广东工业大学学报, 2020, 37(04): 59-64.
[2] 杨兴雨, 何锦安, 沈健华. 基于移动窗口的适应性在线投资组合策略[J]. 广东工业大学学报, 2018, 35(03): 61-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!