广东工业大学学报 ›› 2024, Vol. 41 ›› Issue (04): 70-79.doi: 10.12052/gdutxb.230068

• 信息与通信工程 • 上一篇    下一篇

具有URLLC任务卸载的无人机辅助移动边缘计算系统的计算时延最小化研究

易雅倩, 吴庆捷, 崔苗, 张广驰   

  1. 广东工业大学 信息工程学院, 广东 广州 510006
  • 收稿日期:2023-05-17 出版日期:2024-07-25 发布日期:2024-05-25
  • 通信作者: 崔苗(1978–),女,讲师,博士,主要研究方向为无线通讯技术,E-mail:cuimiao@gdut.edu.cn
  • 作者简介:易雅倩(2001–),女,硕士研究生,主要研究方向为无线通信与边缘计算,E-mail:yqyiumanda@163.com
  • 基金资助:
    广东省基础与应用基础研究基金资助项目(2023A1515011980);广东省科技计划项目(2022A0505050023,2022A0505020008,2023A0505050127);广东省海洋经济发展项目(粤自然资合[2023]24号);广东省特支计划项目(2019TQ05X409);江西省军民融合北斗通航重点实验室开放基金资助项目(2022JXRH0004)

Computing Delay Minimization for UAV-enabled Mobile Edge Computing Systems with URLLC-based Offloading

Yi Ya-qian, Wu Qing-jie, Cui Miao, Zhang Guang-chi   

  1. School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2023-05-17 Online:2024-07-25 Published:2024-05-25

摘要: 无人机辅助移动边缘计算(Mobile Edge Computing, MEC) 系统利用无人机部署灵活和能与地面设备建立起高质量通信链路的优势,可以提高边缘计算的性能。已有的无人机辅助MEC系统研究通常假设计算任务卸载通信的数据包较长,其结果无法直接用于对计算时延具有严格要求的MEC应用场景。本文考虑了一个具有超可靠低时延通信(Ultra-Reliable and Low-Latency Communication, URLLC) 任务卸载的无人机辅助MEC系统,其中一架配备计算服务器的无人机为多个地面设备提供MEC服务,地面设备将部分计算任务通过URLLC的方式向无人机卸载。通过联合优化无人机的部署位置、卸载通信的带宽和无人机与地面设备的中央处理器(Central Processing Unit, CPU) 计算频率来最小化系统的计算时延。针对形成的非凸优化问题,采用块坐标下降方法将该问题分解为无人机部署位置优化子问题和任务卸载带宽与CPU频率优化子问题,并交替求解这两个子问题直到收敛。在求解两个子问题的过程中,使用对数函数非线性近似方法对URLLC卸载通信速率表达式进行化简,并通过连续凸逼近方法将每个子问题转换成易于求解的凸优化问题。仿真结果表明,与其他基准算法相比,所提算法能够有效平衡系统的通信能力和计算能力,从而降低系统时延。

关键词: 无人机, 移动边缘计算, 超可靠低时延通信, 计算时延

Abstract: Unmanned aerial vehicle (UAV)-enabled mobile edge computing (MEC) systems can improve their edge computing performance by taking the advantage of flexible deployment of UAVs and the ability to establish high-quality communication links between UAVs and ground users. The existing works on UAV-enabled MEC systems usually assume that the blocklength of the offloading transmission is long, and their results cannot be directly applied to MEC scenarios with strict requirements on computing delay. A UAV-enabled MEC system with ultra-reliable and low-latency communication (URLLC)-based task offloading is considered, in which a UAV carrying a computing server provides MEC service for multiple ground users and the users offload parts of their computing tasks to the UAV through URLLC. The UAV's deployment location, the offloading bandwidths of the users, and the computing central processing unit (CPU) frequencies of the UAV and users are jointly optimized to minimize the computation delay of the system. To solve the resulting non-convex optimization problem, the block coordinate descent method is used to decompose the problem into two subproblems that optimize the UAV's deployment location, and the offloading bandwidths and CPU frequencies, respectively, and the two subproblems are solved alternately. In solving the two subproblems, logarithmic functions are used to make nonlinear approximation to the expression of URLLC offloading rate to simplify the subproblems, and the two subproblems are both transformed into convex optimization problems by applying the successive convex approximation method. Simulation results show that the proposed algorithm can effectively balance the communication capability and computing capability of the system and reduce the system’s computing delay compared to other benchmark schemes.

Key words: unmanned aerial vehicles, mobile edge computing, ultra reliable and low latency communication, computation delay

中图分类号: 

  • TN929.5
[1] HU X Y, WONG K K, ZHANG Y Y. Wireless-powered edge computing with cooperative UAV: task, time scheduling and trajectory design [J]. IEEE Transactions on Wireless Communications, 2020, 19(12): 8083-8098.
[2] ZHAN C, HU H, SUI X F, et al. Completion time and energy optimization in the UAV-enabled mobile-edge computing system [J]. IEEE Internet of Things Journal, 2020, 7(8): 7808-7822.
[3] ZHAO N, CHENG F, YU F R, et al. Caching UAV assisted secure transmission in hyper-dense networks based on interference alignment [J]. IEEE Transactions on Communications, 2018, 66(5): 2281-2294.
[4] 吴庆捷, 崔苗, 张广驰, 等. 无人机信息采集系统的端到端吞吐量最大化研究[J]. 广东工业大学学报, 2022, 39(6): 53-61.
WU Q J, CUI M, ZHANG G C, et al. End-to-end throughput maximization for UAV-enabled data collection systems [J]. Journal of Guangdong University of Technology, 2022, 39(6): 53-61.
[5] ZHANG J W, ZENG Y, ZHANG R. UAV-enabled radio access network: multi-mode communication and trajectory design [J]. IEEE Transactions on Signal Processing, 2018, 66(20): 5269-5284.
[6] JOHANSSON N A, WANG Y P E, ERIKSSON E, et al. Radio access for ultra-reliable and low-latency 5G communications[C]// 2015 IEEE International Conference on Communication Workshop. London: IEEE, 2015: 1184-1189.
[7] REN H, PAN C H, DENG Y S, et al. Resource allocation for secure URLLC in mission-critical IoT scenarios [J]. IEEE Transactions on Communications, 2020, 68(9): 5793-5807.
[8] XU Y, ZHANG T K, YANG D C, et al. UAV-assisted relaying and MEC networks: resource allocation and 3D deployment[C]//2021 IEEE International Conference on Communications Workshops. Montreal: IEEE, 2021: 1-6.
[9] LIU Y, YAN J J, ZHAO X H. Deep reinforcement learning based latency minimization for mobile edge computing with virtualization in maritime UAV communication network [J]. IEEE Transactions on Vehicular Technology, 2022, 71(4): 4225-4236.
[10] ZHENG T, XIA W W, YAN F, et al. A joint trajectory design, offloading and resource allocation scheme in a multi-UAV-assisted MEC system[C]//2022 IEEE 8th International Conference on Computer and Communications. Chengdu: IEEE, 2022: 521-527.
[11] POLYANSKIY Y, POOR H V, VERDU S. Channel coding rate in the finite blocklength regime [J]. IEEE Transactions on Information Theory, 2010, 56(5): 2307-2359.
[12] REN H, WANG K Z, PAN C H. Intelligent reflecting surface-aided URLLC in a factory automation scenario [J]. IEEE Transactions on Communications, 2022, 70(1): 707-723.
[13] CAI Y M, JIANG X, LIU M Q, et al. Resource allocation for URLLC-oriented two-way UAV relaying [J]. IEEE Transactions on Vehicular Technology, 2022, 71(3): 3344-3349.
[14] EOM H, JUSTE P S, FIGUEIREDO R, et al. Machine learning-based runtime scheduler for mobile offloading framework[C]//2013 IEEE/ACM 6th International Conference on Utility and Cloud Computing. Dresden: IEEE, 2013: 17-25.
[15] YANG Z H, PAN C H, WANG K Z, et al. Energy efficient resource allocation in UAV-enabled mobile edge computing networks [J]. IEEE Transactions on Wireless Communications, 2019, 18(9): 4576-4589.
[16] BOYD S, VANDENBERGHE L. Convex optimization[M]. Cambridge: Cambridge University Press, 2004.
[17] REN H, PAN C H, DENG Y S, et al. Joint pilot and payload power allocation for massive-MIMO-enabled URLLC IoT networks [J]. IEEE Journal on Selected Areas in Communications, 2020, 38(5): 816-830.
[18] 3GPP. Study on scenarios and requirements for next generation access technologies: TR 38.913[S]. Sophia Antipolis: 3GPP, 2017.
[1] 谢正昊, 赖健鑫, 庄晓翀, 蒋丽. 面向无人机数字孪生边缘网络的联邦学习资源自适应优化机制[J]. 广东工业大学学报, 2024, 41(04): 61-69.
[2] 李雪森, 谭北海, 余荣, 薛先斌. 基于YOLOv5的轻量化无人机航拍小目标检测算法[J]. 广东工业大学学报, 2024, 41(03): 71-80.
[3] 李宇龙, 梁静轩, 王丰. 移动边缘计算系统的双服务器协同与计算通信资源联合优化[J]. 广东工业大学学报, 2024, 41(01): 93-100.
[4] 叶深文, 张钢, 罗志勇. 无人机集群巡检道路的航线规划与分布式机场选址方法[J]. 广东工业大学学报, 2023, 40(05): 64-72.
[5] 梁静轩, 王丰. 多用户多时隙移动边缘计算系统的计算缓存优化设计[J]. 广东工业大学学报, 2023, 40(05): 73-80.
[6] 苏天赐, 何梓楠, 崔苗, 张广驰. 多无人机辅助数据收集系统的智能路径规划算法[J]. 广东工业大学学报, 2023, 40(04): 77-84.
[7] 吴庆捷, 崔苗, 张广驰, 陈伟. 无人机信息采集系统的端到端吞吐量最大化研究[J]. 广东工业大学学报, 2022, 39(06): 53-61.
[8] 朱清华, 鹿安邦, 周俭铁, 侯艳. 改进多种群进化算法求解移动边缘计算中任务调度问题[J]. 广东工业大学学报, 2022, 39(04): 9-16.
[9] 王丰, 李宇龙, 林志飞, 崔苗, 张广驰. 基于计算吞吐量最大化的能量采集边缘计算系统在线资源优化配置[J]. 广东工业大学学报, 2022, 39(04): 17-23.
[10] 郑思远, 崔苗, 张广驰. 基于强化学习的无人机安全通信轨迹在线优化策略[J]. 广东工业大学学报, 2021, 38(04): 59-64.
[11] 孟瑞, 廖开怀, 吴希文, 徐永明. 无人机测图的像控点布设优化及精度提升措施[J]. 广东工业大学学报, 2021, 38(02): 48-52,82.
[12] 曾振华, 郑汇峰, 祝玉杰, 罗志勇. 多旋翼无人机自主精准降落的控制系统研究[J]. 广东工业大学学报, 2020, 37(01): 87-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!