广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (06): 53-61.doi: 10.12052/gdutxb.210099
吴庆捷1, 崔苗1, 张广驰1, 陈伟2
Wu Qing-jie1, Cui Miao1, Zhang Guang-chi1, Chen Wei2
摘要: 无人机具有按需快速部署、移动性高、可与地面用户建立起高质量的视距通信链路的优点,能在无线通信和物联网中得到重要的应用。本文研究了一个无人机信息采集系统,在该系统中无人机负责收集多个地面传感器的信息,并将信息回传至信息融合中心。为了最大化信息采集系统的端到端吞吐量,制定了一个联合优化传感器的发射功率、可用带宽的分配、无人机的传输功率和飞行轨迹的优化问题。该优化问题需满足最小信息传输量约束、信息−因果约束、平均和峰值传输功率约束、带宽分配约束和无人机机动性约束,是一个难以直接求解的非凸优化问题。为解决这个问题,本文基于块坐标下降法和连续凸优化方法提出了一个高效的交替优化算法,将问题分解为优化功率带宽和优化无人机飞行轨迹两个子问题,并通过引入松弛变量和一阶泰勒展开的方法将每个子问题变成易于求解的凸优化问题,从而进行交替迭代求解。计算机仿真结果显示所提出的优化算法能够权衡数据收集和数据转发这两段链路,显著提高了系统的端到端吞吐量。同时,通过与另外3种基准方案的性能对比,显示了联合优化功率、带宽和飞行轨迹的必要性。
中图分类号:
[1] ZENG Y, LYU J B, ZHANG R. Cellular-connected UAV: potential, challenges, and promising technologies [J]. IEEE Transactions on Wireless Communications, 2019, 26(1): 120-127. [2] ZHANG G C, WU QQ, CUI M, et al. Securing UAV communications via joint trajectory and power control [J]. IEEE Transactions on Wireless Communications, 2019, 18(2): 1376-1389. [3] WU Q Q, XU J, ZENG Y, et al. A comprehensive overview on 5G-and-beyond networks with UAVs: from communications to sensing and intelligence[J]. IEEE Journal on Selected Areas in Communications, 2021. doi: 10.1109/JSAC.2021.3088681 [4] MATOLAK D W, SUN R Y. Unmanned aircraft systems: air-ground channel characterization for future applications [J]. IEEE Vehicular Technology Magazine, 2015, 10(2): 79-85. [5] ZENG Y, ZHANG R, LIM T J. Wireless communications with unmanned aerial vehicles: opportunitiesand challenges [J]. IEEE communications magazine, 2016, 54(5): 36-42. [6] 郑思远, 崔苗, 张广驰. 基于强化学习的无人机安全通信轨迹在线优化策略[J]. 广东工业大学学报, 2021, 38(4): 59-64. ZHENG S Y, CUI M, ZHANG G C. Reinforcement learning-based online trajectory optimization for secure UAV communications [J]. Journal of Guangdong University of Technology, 2021, 38(4): 59-64. [7] GONG J, CHANG T H, SHEN C, et al. Flight time minimization of UAV for data collection over wireless sensor networks [J]. IEEE Journal on Selected Areas in Communications, 2018, 36(9): 1942-1954. [8] ZENG Y, ZHANG R, LIM T J. Throughput maximization for UAV-enabled mobile relaying systems [J]. IEEE Transactions on Communications, 2016, 64(12): 4983-4996. [9] ZHANG G C, YAN H Q, ZENG Y, et al. Trajectory optimization and power allocation for multi-hop UAV relaying communications[J]. IEEE Access, 6: 48566-48576. doi: 10.1109/ACCESS.2018.2868117. [10] COHEN R, KAPCHITS B. An optimal wake-up scheduling algorithmfor minimizing energy consumption while limiting maximumdelayin amesh sensor network [J]. IEEE-ACM Transactions on Networking, 2009, 17(2): 570-581. [11] ZENG Y, ZHANG R. Energy-efficient UAV communication with trajectory optimization [J]. IEEE Transactions on Wireless Communications, 2017, 16(6): 3747-3760. [12] HE H Y, ZHANG S W, ZENG Y, etal. Joint altitude and beamwidth optimization for UAV-enabled multiusercommunications [J]. IEEE Communications letters, 2018, 22(2): 344-347. [13] ZHANG J W, ZENG Y, ZHANG R. UAV-enabled radio access network: multi-mode communication and trajectory design [J]. IEEE Transactions on Signal Processing, 2018, 66(20): 5269-5284. [14] FAN J Y, CUI M, ZHANG G C, et al. Throughput improvement for multi-hop UAV relaying[J]. IEEE Access, 2019, 7: 147732-147742. doi: 10.1109/ACCESS.2019.2946353. [15] ZHANG C, ZENG Y. Aerial-ground cost tradeoff for multi-UAV-enabled data collection in wireless sensor networks [J]. IEEETransactions on Communications, 2020, 68(3): 1937-1950. [16] WU QQ, ZHANG R. Delay-constrained throughput maximization in UAV-enabled OFDM systems [J]. IEEE Transactionson Communications, 2018, 66(12): 6614-6627. [17] LIU T Y, CUI M, ZHANG G C, et al. 3D trajectory and transmit power optimization for UAV-enabled multi-link relaying systems [J]. IEEE Transactions on Green Communications and Networking, 2021, 5(1): 392-405. [18] MOZAFFARI M, SAAD W, BENNIS M, et al. Mobile unmanned aerial vehicles(UAVs) for energy-efficient Internet of Things communications [J]. IEEE Transactions on Wireless Communications, 2017, 16(11): 7574-7589. [19] SHEN T J, OCHIAI H. AUAV-enabled wireless powered sensor network based on NOMA and cooperative relaying with altitude optimization[J]. IEEE Open Journal of the Communications Society, 2021, 2: 21-34. doi: 10.1109/OJCOMS.2020.3042257. [20] ZHANG C, ZENG Y. Completion time minimization for multi-UAV-enabled data collection [J]. IEEE Transactions on Wireless Communications, 2019, 18(10): 4859-4872. [21] YOU C S, ZHANG R. Hybrid offline-online design for UAV-enabled data harvesting in probabilistic LoSchannels [J]. IEEE Transactions on Wireless Communications, 2020, 19(6): 3753-3768. [22] GOLDSMITH A. Wireless communications[M]. New York: Cambridge University Press, 2005. [23] BOYD S, VANDENBERGHE L. Convex optimization[M]. New York: Cambridge University Press, 2004. |
[1] | 王丰, 李宇龙, 林志飞, 崔苗, 张广驰. 基于计算吞吐量最大化的能量采集边缘计算系统在线资源优化配置[J]. 广东工业大学学报, 2022, 39(04): 17-23. |
[2] | 吴家锐, 崔苗, 张广驰, 王丰. 可重构智能表面辅助的非正交多址接入系统的安全通信研究[J]. 广东工业大学学报, 2022, 39(03): 49-54,69. |
[3] | 蒋丽, 谢胜利, 张彦. 面向6G网络的联邦学习资源协作激励机制设计[J]. 广东工业大学学报, 2021, 38(06): 47-52,83. |
[4] | 郑思远, 崔苗, 张广驰. 基于强化学习的无人机安全通信轨迹在线优化策略[J]. 广东工业大学学报, 2021, 38(04): 59-64. |
[5] | 谭艺枝, 陈宝仁. 无线携能传输协同中继非正交多址接入系统的速率优化设计[J]. 广东工业大学学报, 2020, 37(01): 81-86. |
[6] | 崔苗, 庞浩然, 张广驰, 刘怡俊, 邹为民. 基于无线供电的非正交多址接入网络的鲁棒资源分配研究[J]. 广东工业大学学报, 2018, 35(06): 37-42. |
[7] | 童辉志, 张广驰, 周绪龙, 崔苗, 刘怡俊, 林凡. 具有能量获取基站的相邻多蜂窝小区的能量与频谱分配研究[J]. 广东工业大学学报, 2018, 35(04): 68-74. |
[8] | 蒋阅, 刘海林, 王强. 基于基站休眠技术的无线通信网络能源协作策略[J]. 广东工业大学学报, 2018, 35(02): 69-74. |
[9] | 何丽君, 张广驰, 黄高飞, 万林青, 崔苗, 刘怡俊, 林凡. 无线携能OFDM中继系统的联合资源分配研究[J]. 广东工业大学学报, 2018, 35(01): 29-34. |
|