摘要: 介绍了一种自动优化神经网络的新启迪方法.这种启迪方法综合采用了快速自顶向下优化神经网络结构算法、动态优化学习参数算法和快速交叉校验算法.首先,快速自顶向下优化神经网络结构算法自动地优化神经网络结构;其次,动态优化学习参数算法动态地调整学习参数和选取优化的学习参数;随后,快速交叉校验算法的引入能有效地防止过度适应问题.实验结果显示,这种启迪方法与其它算法相比,具有更强的归纳性能、优化的网络结构和更快的学习速度.
[1] 杨钟瑾,史忠科. 快速选定神经网络优化结构的方法[J]. 计算机科学. 2005(04) [2] 杨钟瑾,史忠科. 快速自顶向下优化神经网络结构的方法[J]. 系统仿真学报. 2005(01) [1] (美)MartinT.Hagan等著.神经网络设计[M]. 机械工业出版社, 2002[2] 史忠科著.神经网络控制理论[M]. 西北工业大学出版社, 1997[1] Kung S,Fallside F,Sorenson J A,et at.Neural networks for signal processing. Proceed ing of the 1992 IEEEW orkshop . 1992[2] Rumelhart DE,Hinton GE,Williams RJ.Learning internal representations by error propagation. Parallel Distributed Processing: Exploration in the Microstructures of Cognition . 1986[3] Simon Haykin.Neural Networks. . 1994[4] Fahlaman SE,Lebiere C.The cascade-correlation learning architecture. Advances in Neural Information Processing Systems . 1990[5] Hassibi B,Stork D G,Wol G J.Optimal brain surgeon and general network pruning. IEEE International Conference on Neural Networks . 1993[6] Holland John H.Adaptation in natural and artificial system. . 1975[7] Yu X H,Chen G A,Cheng S X.Dynamic learning rate optimization of the back propagation algorithm. IEEE Transactions on Neural Networks . 1995[8] Blum E K,Li L K.Approximation theory and feedforward networks. Neural Networks . 1991[9] Fletcher R.Practical Methods of Optimization. . 1990[10] Guyon I,Wang P S P.Special Issue on Neural Networks and Pattern Recognition. Pattern Recognition Artificial Intelligence . 1993[11] FRIEDMAN J H.An overview of predictive learning and function approximation. From statisticsto neural networks:theory and pattern recognition applications,Proceeding of the ASI Conference,Subseries F . 1994[12] MOODY J.Prediction risk and architecture selection for neural networks. From Sta-tistics to Neural Networks:Theory and Pattern Recognition Applications,NATO ASI Series F . 1994 |
No related articles found! |
|