广东工业大学学报 ›› 2017, Vol. 34 ›› Issue (01): 11-14,39.doi: 10.12052/gdutxb.160130

• 综合研究 • 上一篇    下一篇

基于传导变换的自相关函数和互相关函数的拓展研究

史纪磊1, 朱树海1, 陆华晶1, 李日华2   

  1. 1. 宁波大红鹰学院 基础学院, 浙江 宁波 315327;
    2. 海军航空工程学院 系统科学与数学研究所, 山东 烟台 264001
  • 收稿日期:2016-10-18 出版日期:2017-01-09 发布日期:2017-01-09
  • 作者简介:史纪磊(1987-),男,讲师,主要研究方向为可拓理论、概率论与数理统计.
  • 基金资助:

    浙江省教育厅科研项目(Y201636737)

A Research on the Auto-correlation and Cross-correlation Function Based on Conductive Transformation

Shi Ji-lei1, Zhu Shu-hai1, Lu Hua-jing1, Li Ri-hua2   

  1. 1. Academic College, Ningbo Dahongying University, Ningbo 315327, China;
    2. Institute of Systems Science and Mathematics, Naval Aeronautical and Astronautical University, Yantai 264001, China
  • Received:2016-10-18 Online:2017-01-09 Published:2017-01-09

摘要:

利用随机过程的可拓模型,讨论了当过程元的某一个或多个特征的量值改变时,使得该过程中的其他特征的量值发生传导变换,给出了自传导过程元的传导自相关函数和传导互相关函数的概念.利用可拓推理、可拓变换及其传导性,对同一过程的自相关函数和两个过程的单过程变换的互相关函数的拓展性进行了初步研究.

关键词: 过程元集, 传导变换, 传导过程元集, 传导自相关函数, 传导互相关函数

Abstract:

Using the extension model of stochastic process in which the values of one or more characters in one process element are changed, conductive transformation caused by the change in other characters' values in the process element is discussed. The conductive Auto-correlation function and conductive Cross-correlation function are defined. Extensive reasoning rules, extensive transformation and conductive effect of extensive transformation are used to study the expansion of the Auto-correlation function in the same process and the Cross-correlation function in the two processes.

Key words: process element set, conductive transformation, conduction process element set, conductive auto-correlation function, conductive cross-correlation function

中图分类号: 

  • N94

[1] 何书元. 随机过程[M]. 北京:北京大学出版社, 2008:25-72.
[2] 盛骤, 谢长千, 潘承毅. 概率论与数理统计[M]. 北京:高等教育出版社, 2001:328-354.
[3] 李日华, 姜殿玉. 可拓事件与可拓概率[J]. 广东工业大学学报, 1999, 16(4):96-101.LI R H, JIANG D Y. Extension events and extension probability[J]. Journal of Guangdong University of Technology, 1999, 16(4):96-101.
[4] 李日华, 张金春. 随机事元及其传导概率[J]. 哈尔滨工业大学学报, 2006, 38(7):1108-1111. LI R H, ZHANG J C. Random event element and its conductivity probability[J]. Journal of Harbin Institute of Technology, 2006, 38(7):1108-1111.
[5] 李日华, 毛凯, 韩庆龙. 随机事件与随机变量概率分布的拓展研究[J]. 数学的实践与认识, 2010, 40(9):190-195. LI R H, MAI K., HAN Q L. Extensive study on random event and the probability distribution of random variable[J]. Mathematics in Practice and Theory, 2010, 40(9):190-195.
[6] WANG F, ZHANG J C, LI R H. Process element on expansion of the random process's mean function and variance function[C]. International Symposium on Extension and Innovation Methods, Beijing:R. R. Bowker Press, 2013, 40(9):96-101.
[7] 赵锐, 余永权. 工程复杂矛盾问题的信息元表示[J]. 广东工业大学学报, 2016, 33(1):17-21. ZHAO R, YU Y Q. Information unit expression of complex engineering contradiction[J]. Journal of Guangdong University of Technology, 2016, 33(1):17-21.
[8] 杨春燕, 蔡文等. 可拓学[M]. 北京:科学出版社, 2014, 08.
[9] 杨春燕. 事元及其应用[J]. 系统工程理论与实践, 1998, 18(2):80-86.YANG C Y. Affair-element and its application[J]. System Engineering Theory and Practice, 1998, 18(2):80-86.

[1] 崔铁军, 李莎莎. 基于因素驱动的东方思维人工智能理论研究[J]. 广东工业大学学报, 2021, 38(01): 1-4.
[2] 崔铁军, 李莎莎. 系统故障演化过程的可拓学原理[J]. 广东工业大学学报, 2020, 37(05): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!