广东工业大学学报 ›› 2018, Vol. 35 ›› Issue (05): 31-37.doi: 10.12052/gdutxb.180068
杨孟军, 苏成悦, 陈静, 张洁鑫
Yang Meng-jun, Su Cheng-yue, Chen Jing, Zhang Jie-xin
摘要: 闭环检测是视觉SLAM中很重要的一部分,成功地检测出闭环能减小定位算法所产生的累积里程漂移.鉴于深度卷积神经网络在分类问题上的优越表现,本文首次将应用于图像分类的vgg16-places365卷积神经网络模型应用于视觉SLAM闭环检测中,将配准数据输入训练好的该卷积神经网络,其各个隐藏层的输出对应于图像特征表示.然后通过实验比较选用匹配精度较高的中间层完成场景特征提取,通过计算场景特征的相似性得到闭环区域.最后在闭环检测数据集上进行实验测试.测试结果表明,相比于传统的闭环检测方法,vgg16-places365卷积神经网络模型在相同召回率条件下准确率要高约3%;对于特征提取时间,在CPU上要快约5~10倍,而在GPU上更是比传统人工设计特征的闭环检测快近100倍.
中图分类号:
[1] BAILEY T, DURRANT-WHYTE H. Simultaneous localization and papping:part I[J]. IEEE Robotics & Automation Magazine, 2006, 13(2):99-110 [2] WANG H, Hou Z, CHENG L, TAN M. Online mapping with a mobile robot in dynamic and unknown environments[J]. International Journal of Modelling Identification & Control, 2008, 4(4):415-423 [3] FILLIAT D. A visual bag of words method for interactive qualitative localization and mapping[C]//Robotics and Automation, IEEE International Conference. Roma:IEEE, 2007:3921-3926. [4] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110 [5] BAY H, TUYTELAARS T, GOOL L. SURF:Speeded up robust features BT-Computer Vision-ECCV 2006[J]. Computer Vision-ECCV, 2006, 3951:404-417 [6] RUBLEE E, RABAUD V, KONOLIGE K. Orb:an efficient alternative to sift or surf[C]//Computer Vision, IEEE International Conference. Barcelona, Spain:IEEE, 2011:2564-2571. [7] CUMMINS M, NEWMAN P. Highly scalable appearance-only SLAM-FAB-MAP 2.0[M]//Proceedings of Robotics:Science and Systems. Seattle, 2009:1-8. [8] CUMMINS M, NEWMAN P. FAB-MAP:Probabilistic localization and mapping in the space of appearance[J]. International Journal of Robotics Research, 2008, 27(6):647-665 [9] LIU Y, ZHANG H. Visual loop closure detection with a compact image descriptor[J]. IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura-Algarve, Portugal:IEEE, 2012:1051-1056. [10] GAO X, ZHANG T. Unsupervised learning to detect loops using deep neural networks for visual SLAM system[J]. Autonomous Robots, 2017, 41(1):1-18 [11] GAO X, ZHANG T. Loop closure detection for visual slam systems using deep neural networks[C]//Technical commitee on control theory, Chinese control conference. Hangzhou:Chinese Association of Automation, 2015:5851-5856. [12] CHATFIELD K, SIMONYAN K, VEDALDI A, et al. Return of the devil in the details:delving deep into convolutional nets[J]. Computer Science, 2014:1-11 [13] WAN J, WANG D Y. Deep learning for content-based image retrieval:a comprehensive study[C]//Multimedia, ACM International Conference. Istanbul:ACM, 2014:157-166. [14] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[C]//Internationl Conference on Neural Information Processing. Doha, Qatar:ACM, 2012, 60(2):1097-1105. [15] BABENKO A, SLESAREV A, CHIGORIN A. Neural codes for image retrieval[C]//Computer Vision, European Conference. Zurich:Springer, 2014:584-599. [16] 何元烈, 陈佳腾, 曾碧. 基于精简卷积神经网络的快速闭环检测方法[J]. 计算机工程, 2018,44(6):182-187. HE Y L, CHEN J T, ZENG B. A fast loop closure detection method based on lightweight convolutional neural network[J]. Computer Engineering, 2018, 44(6):182-187. [17] XIA Y, LI J, QI L, et al. Loop closure detection for visual SLAM using PCANet features[C]//Neural Networks, IEEE International Joint Conference. Vancouver, Canada:IEEE, 2016:2274-2281. [18] HOU Y, ZHANG H, ZHOU S. Convolutional neural network-based image representation for visual loop closure detection[C]//Information and Automation, IEEE International Conference. Lijiang, China:IEEE, 2015:2238-2245. [19] JIA Y Q, SHELHAMER E, JEFF D. Caffe:convolutional architecture for fast feature embedding[C]//Multimedia, ACM International Conference. Istanbul:ACM, 2014:675-678. [20] SHANG W, SOHN K, ALMEIDA D, et al. Understanding and improving convolutional neural networks via concatenated rectified linear units[C]//Machine Learning, IEEE International Conference. New York:IEEE, 2016:1-17. [21] ZHOU B, KHOSLA A, LAPEDRIZA A, et al. Places:An image database for deep scene understanding[J]. Journal of Vision, 2016, 17(10):1-12 |
[1] | 谢国波, 林立, 林志毅, 贺笛轩, 文刚. 基于YOLOv4-MP的绝缘子爆裂缺陷检测方法[J]. 广东工业大学学报, 2023, 40(02): 15-21. |
[2] | 章云, 王晓东. 基于受限样本的深度学习综述与思考[J]. 广东工业大学学报, 2022, 39(05): 1-8. |
[3] | 丘展春, 费伦科, 滕少华, 张巍. 余弦相似度保持的掌纹识别算法[J]. 广东工业大学学报, 2022, 39(03): 55-62. |
[4] | 黄剑航, 王振友. 基于特征融合的深度学习目标检测算法研究[J]. 广东工业大学学报, 2021, 38(04): 52-58. |
[5] | 马少鹏, 梁路, 滕少华. 一种轻量级的高光谱遥感图像分类方法[J]. 广东工业大学学报, 2021, 38(03): 29-35. |
[6] | 汝少楠, 何元烈, 叶星余. 基于稀疏直接法闭环检测定位的视觉里程计[J]. 广东工业大学学报, 2021, 38(03): 48-54. |
[7] | 夏皓, 蔡念, 王平, 王晗. 基于多分辨率学习卷积神经网络的磁共振图像超分辨率重建[J]. 广东工业大学学报, 2020, 37(06): 26-31. |
[8] | 战荫伟, 朱百万, 杨卓. 车辆颜色和型号识别算法研究与应用[J]. 广东工业大学学报, 2020, 37(04): 9-14. |
[9] | 曾碧卿, 韩旭丽, 王盛玉, 徐如阳, 周武. 基于双注意力卷积神经网络模型的情感分析研究[J]. 广东工业大学学报, 2019, 36(04): 10-17. |
[10] | 陈旭, 张军, 陈文伟, 李硕豪. 卷积网络深度学习算法与实例[J]. 广东工业大学学报, 2017, 34(06): 20-26. |
[11] | 申小敏, 李保俊, 孙旭, 徐维超. 基于卷积神经网络的大规模人脸聚类[J]. 广东工业大学学报, 2016, 33(06): 77-84. |
[12] | 戴知圣, 潘晴, 常桂林, 陈健刚. 基于机器视觉的贴片引脚焊接缺陷检测[J]. 广东工业大学学报, 2016, 33(03): 65-69. |
[13] | 邹丽娜,凌捷. 一种基于特征提取的二级文本分类方法[J]. 广东工业大学学报, 2012, 29(4): 65-68. |
[14] | 张烈平; 张俞伟; 莫玮; . RBF神经网络在诱发脑电信号分类中的应用研究[J]. 广东工业大学学报, 2004, 21(4): 16-20. |
[15] | 周维忠; 赵海洋; 孙国基; 冯心海; . 基于自适应小波的光频数据分类[J]. 广东工业大学学报, 1999, 16(3): 52-56. |
|