广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (01): 34-41.doi: 10.12052/gdutxb.190024

• 综合研究 • 上一篇    下一篇

基于能量传递可调色度ZnNb2O6:Dy3+, Eu3+荧光粉的制备及其发光性能研究

梁柏鑫, 易双萍, 胡耕樵, 方志雄, 赵韦人   

  1. 广东工业大学 物理与光电工程学院, 广东 广州 510006
  • 收稿日期:2019-02-18 出版日期:2020-01-25 发布日期:2019-12-10
  • 通信作者: 易双萍(1965-),女,教授,主要研究方向为无机发光材料,E-mail:yispgd@163.com E-mail:yispgd@163.com
  • 作者简介:梁柏鑫(1991-),男,硕士研究生,主要研究方向为无机非金属光电材料
  • 基金资助:
    广东省科技发展专项(2016A010103029);广州市科技计划项目科学研究专项(201607010179)

Synthesis and Luminescence Properties of Multicolor Tunable ZnNb2O6: Dy3+, Eu3+ Phosphors Based on Energy Transfer

Liang Bo-xin, Yi Shuang-ping, Hu Geng-qiao, Fang Zhi-xiong, Zhao Wei-ren   

  1. School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2019-02-18 Online:2020-01-25 Published:2019-12-10

摘要: 采用传统的高温固相法合成了Dy3+/Eu3+单掺杂和Dy3+,Eu3+共掺的具有可调色度ZnNb2O6荧光粉。利用X射线衍射、激发和发射光谱、荧光寿命以及扫描电镜(SEM)等系统地分析了上述合成样品。ZnNb2O6在200~500 nm有着较宽的吸收带,呈现出具有自激活发光的特性。ZnNb2O6:0.08Dy3+和ZnNb2O6:0.08Dy3+,0.03Eu3+荧光粉的色度坐标接近标准白光(0.33,0.33)。通过Dy3+作为敏化剂,Eu3+作为红光发光来调节样品的发光颜色;通过荧光光谱以及荧光寿命衰减曲线确定Dy3+至Eu3+离子的能量传递机制。分析得出Dy3+离子到Eu3+离子的能量传递机制遵循非辐射电偶极矩-电四极矩作用。据此,本文制备的ZnNb2O6:0.08Dy3+yEu3+荧光粉在紫外汞灯白光源和其他固态照明技术中具有一定的应用价值。

关键词: 荧光粉, 光致发光, X射线衍射, 能量传递

Abstract: In order to study new rare earth ion doped chromaticity phosphors, a color-tunable phosphor based on Dy3+/Eu3+ co-doped ZnNb2O6 were synthesized by a traditional solid-state reaction method. X-ray powder diffraction (XRD), Scanning Electron Microscope (SEM), photoluminescence spectra and decay curves were utilized to characterize the as-prepared phosphors. The ZnNb2O6 host was proved to be a self-activated phosphor with broad absorption range from 200 to 550 nm. The color coordinate (x, y) values of ZnNb2O6:0.08Dy3+ and ZnNb2O6:0.08Dy3+, 0.03Eu3+ phosphors were already very close to the standard white light (0.33, 0.33). Therefore, Dy3+ was selected as the sensitizer ion and red component from Eu3+ adjusted to control the emission color. The energy transfer from Dy3+ to Eu3+ was confirmed based on the luminescence spectra and decay curves. Furthermore, the energy transfer mechanism was deduced to be the dipole-quadrupole interaction. In general, the ZnNb2O6:0.08Dy3+, yEu3+ phosphors obtained may have potential application in the ultraviolet pumped white light sources and display devices etc.

Key words: phosphors, luminescence, X-ray diffraction, energy transfer

中图分类号: 

  • TB321
[1] WU C, LI Y, GONG H, et al. Niobium-oxygen octahedra and oxygen interstitial defect emissions in calcium niobate matrix and its color manipulation via doping Pr3+[J]. AIP Advances, 2017, 7(2):1-6
[2] WAN L, XIONG F Q, LI Y, et al. Low defect density, high surface area LaNbON2 prepared via nitridation of La3NbO7[J]. Materials Letters, 2017, 188:212-214
[3] WANG T, HU Y, CHEN L, et al. A White-Light emitting phosphor LuNbO4:Dy3+ with tunable emission color manipulated by energy transfer from NbO43- groups to Dy3+[J]. Journal of Luminescence, 2017, 181:189-195
[4] MO F, ZHOU L, PANG Q, et al. Synthesis and luminescent properties of Zn0.890Nb2O6:Eu0.053+, Bi0.0053+, M0.055+(M=Li, Na, K) phosphors[J]. Current Applied Physics, 2013, 13(2):331-335
[5] VERMA T, AGRAWAL S. Photoluminescent and Thermoluminescent Studies of Dy3+ and Eu3+ Doped Y2O3 phosphors[J]. J Fluoresc, 2018, 28(1):453-464
[6] LI Y, XIONG F Q, OU R, et al. Chloride flux growth of crystalline strontium niobates and nitridation to perovskite SrNbO2N[J]. Ceramics International, 2017, 43(10):7695-7700
[7] LIU X, LIN C, LUO Y, et al. Host-sensitized luminescence of Dy3+, Pr3+, Tb3+ in polycrystalline SrIn2O4 for field emission displays[J]. Journal of The Electrochemical Society, 2007, 154(1):J21-27
[8] 张璐, 易双萍, 赵韦人, 等. 紫外激发GdNbO4:Tb3+色度可调荧光粉的制备和发光性能的研究[J]. 广东工业大学学报, 2017, 34(5):91-95
ZHANG L, YI S P, ZHAO W R, et al. Synthesis and photoluminescence properties of multicolor tunable GdNbO4:Tb3+ phosphors[J]. Journal of Guangdong University of Technology, 2017, 34(5):91-95
[9] YANG M, ZHAO X, JI Y, et al. Hydrothermal approach and luminescent properties for the synthesis of orthoniobates GdNbO4:Ln3+(Ln=Dy, Eu) single crystals under high-temperature high-pressure conditions[J]. New J Chem, 2014, 38(9):4249-4257
[10] MAHESH S K, RAO P P, FRANCIS T L, et al. Intense red line emitting phosphor LuNbO4:Eu3+ for white-light emitting diode applications[J]. Materials Letters, 2014, 120:115-117
[11] LI K, LIU X, ZHANG Y, et al. Host-sensitized luminescence properties in CaNb2O6:Ln3+(Ln3+=Eu3+/Tb3+/Dy3+/Sm3+) phosphors with abundant colors[J]. Inorg Chem, 2015, 54(1):323-333
[12] XU D, LIU Y, ZHOU Q, et al. Optical phonon behaviors of columbite ZnNb2O6 single crystal[J]. Journal of Alloys and Compounds, 2015, 618:694-699
[13] JIANG C, BRIK M G, LI L, et al. The electronic and optical properties of a narrow-band red-emitting nanophosphor K2NaGaF6:Mn4+ for warm white light-emitting diodes[J]. Journal of Materials Chemistry C, 2018, 6(12):3016-3025
[14] WANG R, ZHANG W, XU Y, et al. Upconversion emissions in ZnNb2O6:Ho3+/Yb3+ ceramics[J]. Optics & Laser Technology, 2014, 58:52-55
[15] GOU J, WANG Y, GUO H. Energy transfer in Dy3+ and Al3+ co-doping ZnNb2O6[J]. Journal of Physics:Conference Series, 2009, 152(1):012081
[16] GAO S P, QIAN Y N, WANG B. Photoluminescence of rare-earth ion (Eu3+, Tm3+, and Er3+)-doped and co-doped ZnNb2O6 for solar cells[J]. Chinese Physics B, 2015, 24(8):1-6
[17] ZHOU Y Y, Qiu Z F, LU M K, et al. Photoluminescence Characteristics of pure and Dy-doped ZnNb2O6 nanoparticles prepared by a combustion method[J]. The Journal of Physical Chemistry C, 2007, 111(28):10190-10193
[18] PULLAR R C. The synthesis, properties, and applications of columbite niobates (M2+Nb2O6):a critical review[J]. Journal of the American Ceramic Society, 2009, 92(3):563-577
[19] FANG T H, HSIAO Y J, CHANG Y S, et al. Photoluminescent characterization of KNbO3:Eu3+[J]. Materials Chemistry and Physics, 2006, 100(2-3):418-422
[20] WANG Y, ENDO T, XIE E, et al. Luminescence properties of Ca4GdO(BO3)3:Eu3+ in ultraviolet and vacuum ultraviolet regions[J]. Microelectronics Journal, 2004, 35(4):357-361
[21] XIAN J, YI S, DENG Y, et al. Synthesis and photoluminescence properties of Ln3+(Ln3+=Tb3+, Dy3+, Sm3+, Er3+)-doped Ca2Nb2O7 phosphors[J]. Physica B:Condensed Matter, 2016, 483:19-25
[22] LIU C, ZHOU W, SHI R, et al. Host-sensitized luminescence of Dy3+ in LuNbO4 under ultraviolet light and low-voltage electron beam excitation:energy transfer and white emission[J]. Journal of Materials Chemistry C, 2017, 5(35):9012-9020
[23] 黄军, 易双萍, 冼洁强, 等. Eu3+和Dy3+ 共掺单基质Ba2CaWO6白色荧光粉的合成与发光性质[J]. 广东工业大学学报, 2016, 33(2):76-80
HUANG J, YI S P, XIAN J Q, et al. Synthesis and luminescent properties of Eu3+ and Dy3+ co-doped single host Ba2CaWO6 white phosphors[J]. Journal of Guangdong University of Technology, 2016, 33(2):76-80
[24] SHI X, WANG Z, TAKEI T, et al. Selective crystallization of four tungstates (La2W3O12, La2W2O9, La14W8O45, and La6W2O15) via hydrothermal reaction and comparative study of Eu3+ luminescence[J]. Inorg Chem, 2018, 57(11):6632-6640
[25] FU A, GUAN A, YU D, et al. Synthesis, structure, and luminescence properties of a novel double-perovskite Sr2LaNbO6:Mn4+ phosphor[J]. Materials Research Bulletin, 2017, 88:258-265
[26] JHA K, VISHWAKARMA A K, JAYASIMHADRI M, et al. Multicolor and white light emitting Tb3+/Sm3+ co-doped zinc phosphate barium titanate glasses via energy transfer for optoelectronic device applications[J]. Journal of Alloys and Compounds, 2017, 719:116-124
[27] SUN J, ZENG J, SUN Y, et al. Tunable luminescence of Ce3+/Mn2+-coactivated Sr3Gd(PO4)3 with efficient energy transfer for white-light-emitting Diode[J]. Journal of Luminescence, 2013, 138:72-76
[28] ZHANG X, ZHANG J, CHEN Y. Broadband-excited and efficient blue/green/red-emitting Ba2Y5B5O17:Ce3+, Tb3+, Eu3+ phosphors using Tb3+-bridged Ce3+-Eu3+ energy transfer[J]. Dyes and Pigments, 2018, 149:696-706
[29] SUN J, ZENG J, SUN Y, et al. Photoluminescence properties and energy transfer of Ce3+, Eu2+ co-doped Sr3Gd(PO4)3 phosphor[J]. Journal of Alloys and Compounds, 2012, 540:81-84
[30] WANG H, ZHOU X, YAN J, et al. (Ln3+=Eu3+/Dy3+/Dy3+, Eu3+) doped NaGd(MoO4)2 phosphors with uniform morphologies:hydrothermal synthesis, luminescent properties, energy transfer and color tunable emission[J]. Journal of Luminescence, 2018, 195:170-175
[1] 方志雄, 易双萍, 周一轩, 赵韦人. 双钙钛矿结构Sr2GdSbO6:Eu3+荧光粉的制备与表征[J]. 广东工业大学学报, 2023, 40(02): 88-94.
[2] 廖子锋, 赵韦人, 黄浩, 宋静周. 高浓度锰掺杂Ca14Zn6Al10O35荧光粉的近红外第二窗口发光[J]. 广东工业大学学报, 2021, 38(01): 97-103,110.
[3] 鲁重瑞, 赵韦人, 廖子锋, 宋静周, 夏梦龙, 杨焕鑫. 铕掺杂NASICON结构红色荧光粉制备和发光性能[J]. 广东工业大学学报, 2020, 37(01): 27-33.
[4] 何景祺, 罗莉. 新型近紫外激发单一基质荧光粉Sr2V2O7:Ln(Ln=Eu3+, Dy3+, Sm3+, Tb3+)的研究[J]. 广东工业大学学报, 2019, 36(01): 68-74.
[5] 柳滢春, 郭建维, 罗涛, 吴彤彪. (乙烯基咔唑-对金刚烷基苯乙烯)共聚物的合成与光致发光性能[J]. 广东工业大学学报, 2018, 35(01): 73-76.
[6] 张璐, 易双萍, 赵韦人, 胡小雪. 紫外激发GdNbO4:Tb3+色度可调荧光粉的制备和发光性能的研究[J]. 广东工业大学学报, 2017, 34(05): 91-95.
[7] 黄保裕, 罗莉, 王银海, 韩春龙. Ba3Y(PO4)3:Sm3+, Eu3+红光荧光粉的发光和能量传递的研究[J]. 广东工业大学学报, 2017, 34(02): 40-47.
[8] 黄军,易双萍,冼洁强,张璐. Eu3+和Dy3+共掺单基质Ba2CaWO6白色荧光粉的合成与发光性质[J]. 广东工业大学学报, 2016, 33(02): 76-80.
[9] 邓玲玲,赵韦人,方夏冰. 荧光粉Ba3-x-yP4O13:xCe3+,yTb3+的光谱分析[J]. 广东工业大学学报, 2013, 30(2): 28-32.
[10] 李 享, 胡义华, 王银海, 符楚君, 吴浩怡, 康逢文, 居桂方, 牟中飞. Nax Sr1-2x MoO4:Eux3+的制备及其发光性能的研究[J]. 广东工业大学学报, 2010, 27(4): 32-35.
[11] 贾继扩, 罗 莉, 吴浩怡. Sr/Pb的比例对钛酸锶铅结构的影响[J]. 广东工业大学学报, 2010, 27(1): 25-27.
[12] 李瑜煜; 张仁元; . 热电材料计算机辅助XRD相分析方法与实现[J]. 广东工业大学学报, 2007, 24(03): 42-45.
[13] 张小红, 陈炳德, 关泳涛, 彭彤彤. 荧光纯ZnS制备新法[J]. 广东工业大学学报, 1995, 12(4): 100-104.
[14] 范雄, 源可珊, 李穗湘, 何惠珍. 三种硅钢片的分析比较[J]. 广东工业大学学报, 1994, 11(1): 13-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!