广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (01): 81-86.doi: 10.12052/gdutxb.190080

• 综合研究 • 上一篇    下一篇

无线携能传输协同中继非正交多址接入系统的速率优化设计

谭艺枝1, 陈宝仁2   

  1. 1. 广东工业大学 信息工程学院, 广东 广州 510006;
    2. 中国南方电网有限责任公司 系统运行部, 广东 广州 510623
  • 收稿日期:2019-06-13 出版日期:2020-01-25 发布日期:2019-12-31
  • 作者简介:谭艺枝(1980-),女,讲师,博士,主要研究方向为无线通信,E-mail:tanyz@gdut.edu.cn
  • 基金资助:
    广东省自然科学基金资助项目(2018A030310593);广州市科技计划资助项目(201904010371)

A Rate Optimization Design of the Cooperative Relaying System Using NOMA with Wireless Power Transfer

Tan Yi-zhi1, Chen Bao-ren2   

  1. 1. School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China;
    2. System Operation Department, China Southern Power Gridu Co., Ltd., Guangzhou 510623, China
  • Received:2019-06-13 Online:2020-01-25 Published:2019-12-31

摘要: 研究了无线携能传输协同中继非正交多址接入系统中的强用户速率最大化问题。通过把非凸的优化问题转化为凸优化问题,并由MATLAB仿真得到强用户速率的优化结果。结果表明:此非正交多址接入系统的强用户速率随着源节点发射功率的增加而增加;在强用户速率性能方面,此非正交多址接入系统明显优于传统的时分多址接入系统。

关键词: 非正交多址接入系统, 无线携能传输, 速率优化, 功率分配, 功分系数

Abstract: The maximization of the strong user rate in the cooperative relaying system using non-orthogonal multiple access (NOMA) system with wireless power transfer is studied. By transforming the non-convex optimization problem into the convex one, the optimization results of the strong user rate are obtained by MATLAB simulation. The results show that:1) the strong user rate of this NOMA system increases with the increasing of the transmit power from the source node; 2) compared with traditional time-division multiple access (TDMA) system, the strong user rate performance of NOMA system obviously outperforms that of TDMA system.

Key words: non-orthogonal multiple access (NOMA), wireless power transfer, rate optimization, power allocation, power splitting ratio

中图分类号: 

  • TN929.5
[1] SATIO Y, BENJEBBOUR A, KISHIYAMA Y, et al. System level performance evaluation of downlink non-orthogonal multiple access(NOMA)[C]//Proc. IEEE Pers. Ind. Mob. Radio Commun (PIMRC). UK, London:IEEE, 2013:611-615.
[2] TIMOTHEOU S, KRIKIDIS I. Fairness for non-orthogonal multiple access in 5G systems[J]. IEEE Signal Processing Letters, 2015, 22(10):1647-1651
[3] DING Z G, FAN P Z, POOR H V. Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions[J]. IEEE Transactions on Vehicular Technology, 2016, 65(8):6010-6023
[4] DING Z G, LIU Y W, CHOI J, et al. Application of non-orthogonal multiple access in LTE and 5G networks[J]. IEEE Communications Magazine, 2017, 55(2):185-191
[5] DING Z G, PENG M G, POOR H V. Cooperative non-orthogonal multiple access in 5G systems[J]. IEEE Commun. Lett, 2015, 19(8):1462-1465
[6] KIM J B, LEE I H. Capacity analysis of cooperative relaying systems using non-orthogonal multiple access[J]. IEEE Commun. Lett, 2015, 19(11):1949-1952
[7] LI Y Q, JIANG M, ZHANG Q, et al. Cooperative non-orthogonal multiple access in multiple-input-multiple-output channels[J]. IEEE Trans Wireless Commun, 2018, 17(3):2068-2079
[8] VARSHNEY L. Transporting information and energy simultaneously[C]//2008 IEEE International Symposium on Information Theory. Canada, Toronto:IEEE, 2008:1612-1616.
[9] ZHANG R, HO C K. MIMO broadcasting for simultaneous wireless information and power transfer[J]. IEEE Transactions on Wireless Communications, 2013, 12(5):1989-2001
[10] NASIR A A, ZHOU X Y, DURRANI S, et al. Relaying protocols for wireless energy harvesting and information processing[J]. IEEE Transactions on Wireless Communications, 2013, 12(7):3622-3636
[11] KRIKIDIS I, SASAKI S, TIMOTHEOU S, et al. A low complexity antenna switching for joint wireless information and energy transfer in MIMO relay channels[J]. IEEE Transactions on Communications, 2014, 62(5):1577-1587
[12] 何丽君, 张广驰, 黄高飞, 等. 无线携能OFDM中继系统的联合资源分配研究[J]. 广东工业大学学报, 2018, 35(1):29-34
HE L J, ZHANG G C, HUANG G F, et al. Rate optimization design of the cooperative relaying system using NOMA with wireless power transfer[J]. Journal of Guangdong University of Technology, 2018, 35(1):29-34
[13] LIU Y W, DING Z G, ELKASHLAN M, et al. Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(4):938-953
[14] DO N T, COSTA D B, DUONG T Q, et al. A BNBF user selection scheme for NOMA-based cooperative relaying systems with SWIPT[J]. IEEE Communications Letters, 2017, 21(3):664-667
[15] BHATNAGAR M R. On the capacity of decode-and-forward relaying over Rician fading channels[J]. IEEE Communication Letters, 2013, 17(6):1100-1103
[16] GRANT M, BOYD S. CVX:Matlab software for disciplined convex programming[Z]. Version 2.1. 2011.
[1] 崔苗, 庞浩然, 张广驰, 刘怡俊, 邹为民. 基于无线供电的非正交多址接入网络的鲁棒资源分配研究[J]. 广东工业大学学报, 2018, 35(06): 37-42.
[2] 何丽君, 张广驰, 黄高飞, 万林青, 崔苗, 刘怡俊, 林凡. 无线携能OFDM中继系统的联合资源分配研究[J]. 广东工业大学学报, 2018, 35(01): 29-34.
[3] 万小龙, 刘海林, 李炯城, 肖恒辉. 基于牛顿迭代法预留子载波功率分配的峰均比抑制方法[J]. 广东工业大学学报, 2015, 32(1): 85-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!