广东工业大学学报 ›› 2021, Vol. 38 ›› Issue (01): 75-81.doi: 10.12052/gdutxb.200004
洪育敏, 杨理平
Hong Yu-min, Yang Li-ping
摘要: 在去掉锥的正规性和映射的弱增性的条件下, 研究Banach代数锥度量空间中的公共不动点的存在性和唯一性, 其结果改进和推广了相关文献中的一些主要结论。
中图分类号:
[1] MICULESCU R, MIHAIL A. New fixed point theorems for set-valued contractions in b-metric spaces [J]. Journal of Fixed Point Theory and Applications, 2017, 19: 2153-2163. [2] ALEKSIC S, HUANG H P, ZORAN D M, et al. Remarks on some fixed point results in b-metric spaces [J]. Journal of Fixed Point Theory and Applications, 2018, 20: 147. [3] HUANG L G, ZHANG X. Cone metric spaces and fixed point theorems of contractive mappings [J]. Journal of Mathematical Analysis and Applications, 2007, 332: 1468-1476. [4] LIU H, XU S. Cone metric spaces with Banach algebras and fixed point theorems of generalized Lipschitz map-pings [J]. Fixed Point Theory and Applications, 2013, 1: 1-10. [5] RUDIN W. Functional Analysis[M]. 2nd ed. New York: McGeaw-Hill, 1991. [6] XU S Y, RADENOVIC S. Fixed point theorems of generalized Lipschitz mappings on cone metric spaces over Banach algebras without assumption of normality [J]. Fixed Point Theory and Applications, 2014, 102: 1-12. [7] HUANG H P, RADENOVIC S. Common fixed point theorems of generalized Lipschitz mappings in cone b-metric spaces over Banach algebras and applications [J]. Journal of Nonlinear Sciences and Applications, 2015, 8: 787-799. [8] MUJAHID A, JUNGCK G. Common fixed point results for noncommuting mappings without continuity in cone metric spaces [J]. Journal of Mathematical Analysis and Applications, 2008, 341: 416-420. [9] DIBARI C, VETRO P. ?-Pairs and common fixed points in cone metric spaces [J]. Rendiconti del Circolo Math-ematico di Palermo, 2008, 57: 279-285. [10] KADELBURG Z, PAVLOVIC M, RADENOVIC S. Common fixed point theorems for ordered contractions and quasicontractions in ordered cone metric spaces [J]. Computers Mathematics with Applications, 2010, 59: 3148-3159. [11] ZORAN D M, RADENOVIC S, HUSSAIN N. A common fixed point theorem of Fisher in b-metric spaces [J]. Revista de la Real Academia de Ciencias Exactas Fisicasy Naturales Serie A-Matematicas, 2018, 113 (4): 949-956. [12] HUANG H P, RADENOVIC S, DOSENOVIC T. Some common fixed point theorems on c-distance in cone metric spaces over Banach algebras [J]. Computers & Mathematics with Applications, 2015, 14: 180-193. [13] 刘艳艳, 杨理平. 锥度量空间中c-距离的公共不动点定理[J]. 广东工业大学学报, 2019, 36(5): 43-47. LIU Y Y, YANG L P. Common fixed point theorems for c-distances in cone metric spaces [J]. Journal of Guangdong University of Technology, 2019, 36(5): 43-47. [14] 许涛, 贺飞, 刘俊楠. b-距离空间中含有四个映射的Ciri型公共不动点定理[J]. 应用泛函分析学报, 2017, 19(2): 165-175. XU T, HE F, LIU J N. Ciri type common fixed point theorem with four mappings in b-distance space [J]. Acta Analysis Functionalis Applicata, 2017, 19(2): 165-175. [15] SEDGHI S, SHOBKOLAEI N, SHAHRAKI M, et al. Common fixed point of four maps in S-metric spaces [J]. Mathematical Sciences, 2018, 12(2): 137-143. [16] 韩艳, 许绍元. 半序锥度量空间中新公共不动点定理[J]. 应用数学, 2012, 25(1): 194-201. HAN Y, XU S Y. A new common fixed point theorem in a space of semi-order taper quantities [J]. Mathematica Applicata, 2012, 25(1): 194-201. |
[1] | 刘艳艳, 杨理平. 锥度量空间中c-距离的公共不动点定理[J]. 广东工业大学学报, 2019, 36(05): 43-47. |
[2] | 陈盼, 孔伟铭, 杨理平. 锥度量空间中四个自映射的公共不动点定理[J]. 广东工业大学学报, 2014, 31(4): 79-84. |
[3] | 孔伟铭,杨理平. 锥度量空间中扩张映象对的公共不动点定理[J]. 广东工业大学学报, 2013, 30(1): 76-80. |
[4] | 杨理平; . 广义2-距离空间中映象列的公共不动点[J]. 广东工业大学学报, 2002, 19(4): 92-97. |
[5] | 杨理平; . 一类压缩型映象序列的公共不动点定理[J]. 广东工业大学学报, 1998, 15(4): 71-75. |
[6] | 杨理平; . 一类交换映象的公共不动点定理[J]. 广东工业大学学报, 1998, 15(2): 107-109. |
|