广东工业大学学报 ›› 2021, Vol. 38 ›› Issue (04): 95-102.doi: 10.12052/gdutxb.200081

• • 上一篇    下一篇

变径管对双级行波热声发动机的性能影响研究

卢健彬1,2, 陈颖1, 林子渊2, 陈佰满2   

  1. 1. 广东工业大学 材料与能源学院,广东 广州 510006;
    2. 东莞理工学院 化学工程与能源技术学院,广东 东莞 523808
  • 收稿日期:2020-06-19 出版日期:2021-07-10 发布日期:2021-05-25
  • 通信作者: 陈佰满(1985-),男,副教授,主要研究方向为热声发动机,E-mail:chenbm@dgut.edu.cn E-mail:chenbm@dgut.edu.cn
  • 作者简介:卢健彬(1996-),男,硕士研究生,主要研究方向为热声发动机
  • 基金资助:
    广东省自然科学基金资助面上项目(2019A1515010460);2018东莞理工学院2018年科技产业创新服务专项行动项目(2018010)

Investigation on the Performance of a Two-Stage Traveling-Wave Thermoacoustic Engine by the Effect of Variable Diameter Tube

Lu Jian-bin1,2, Chen Yin1, Lin Zi-yuan2, Chen Bai-man2   

  1. 1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China;
    2. School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
  • Received:2020-06-19 Online:2021-07-10 Published:2021-05-25

摘要: 在双级行波热声发动机的谐振管中加入变径管, 并利用deltaEC(Design Environment for Low-amplitude ThermoAcoustic Energy Conversion)对其进行数值模拟分析, 探究变径管在2个热声热机单元中无负载及外接负载时, 对换热器间温差和回热器声功输出性能的影响。通过调节变径管的内直径、长度和位置, 分析其对双级行波热声发动机的影响。模拟结果表明, 在恒功率的情况下, 变径管通过在不同的位置和内直径下有效调节相位、压力幅值、体积流率等, 从而影响热声发动机的系统稳定温差和输出性能, 使热声热机出现低稳定温差、高能量产出或更高的相对效率, 从而适应不同应用场合, 合理规划能源使用。

关键词: 变径管, 双级热声热机, 环路

Abstract: A numerical simulation of a two-stage traveling-wave thermoacoustic engine with reducers is investigated. The results showed that the variation of different inner diameter, length, and position of the reducer affect the temperature difference and output performance of heat exchanger between two thermoacoustic engines. When both thermoacoustic engines operate under the same constant power, the reducers affect the temperature difference and output performance of the system by adjusting the phase at different positions and inner diameters that result in low-temperature difference and high energy output.

Key words: reducer, two-stage thermoacoustic engine, loop

中图分类号: 

  • TK11+5
[1] 麦志豪, 邹城, 陈观生, 等. 斯特林发动机回热器性能研究[J]. 广东工业大学学报, 2014, 31(1): 121-125.
MAI Z H, ZOU C, CHEN G S, et al. Performance study of heat regenerators of stirling engines [J]. Journal of Guangdong University of Technology, 2014, 31(1): 121-125.
[2] BACKHAUS S, SWIFT G W. A thermoacoustic Stirling heat engine [J]. Nature, 1999, 399(6734): 335-338.
[3] BACKHAUS S, SWIFT G W. A thermoacoustic-Stirling heat engine: detailed study [J]. The Journal of the Acoustical Society of America, 2000, 107(6): 3148-3166.
[4] CEPERLEY P H. A pistonless Stirling engine—the traveling wave heat engine [J]. Journal of the Acoustical Society of America, 1979, 66(5): 1508-1513.
[5] YAZAKI T, IWATA A, MAEKAWA T, et al. Traveling wave thermoacoustic engine in a looped tube [J]. Phys rev lett, 1998, 81(15): 3128-3131.
[6] BLOK K D. Novel 4-stage traveling wave thermoacoustic power generator[C]//ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels and Minichannels. Montreal: American Society of Mechanical Engineers, 2010: 73-79.
[7] KEES D B. Multi-stage traveling wave thermoacoustics in practice[C]//19th International Congresson Sound and Vibration. Vilnius: International Institute of Acoustics and Vibration(ⅡAV) and Vilnius University, 2012: 1-8.
[8] YU Z, JAWORSKI A J, BACKHAUS S. Travelling-wave thermoacoustic electricity generator using an ultra-compliant alternator for utilization of low-grade thermal energy [J]. Applied Energy, 2012, 99: 135-145.
[9] KANG H, CHENG P, YU Z, et al. A two-stage traveling-wave thermoacoustic electric generator with loudspeakers as alternators [J]. Applied Energy, 2015, 137: 9-17.
[10] 杨睿, 王祎, 封叶, 等. 带阻性管的环路行波热声发动机性能研究[J]. 工程热物理学报, 2017, 38(5): 937-940.
YANG R, WANG Y, FENG Y, et al. Study on the performance of a looped thermoacoustic prime mover with resistance tube [J]. Journal of Engineering Thermophysics, 2017, 38(5): 937-940.
[11] JIN T, YANG R, WANG Y, et al. Phase adjustment analysis and performance of a looped thermoacoustic prime mover with compliance/ resistance tube [J]. Applied Energy, 2016, 183: 290-298.
[12] JIN T, YANG R, WANG Y, et al. Acoustic field characteristics and performance analysis of a looped travelling-wave thermoacoustic refrigerator [J]. Energy Conversion & Management, 2016, 123: 243-251.
[13] KRUSE A, RUZIEWICZ A, NEMS A, et al. Numerical analysis of competing methods for acoustic field adjustment in a looped-tube thermoacoustic engine with a single stage [J]. Energy Conversion & Management, 2019, 181: 26-35.
[14] CHEN B, JIAO F, HO K, et al. Numerical analysis of acoustic field in a 2-stage traveling wave thermoacoustic engine based on DeltaEC [J]. Energy Procedia, 2017, 105: 4615-4620.
[15] CHEN B, TIAN S, LIU J, et al. The development of a two-stage traveling wave thermoacoustic engine [J]. Energy Procedia, 2017, 105: 1551-1556.
[16] SWIFT G W, GARRETT S L. Thermoacoustics: a unifying perspective for some engines and refrigerators [J]. Journal of the Acoustical Society of America, 2018, 113(5): 2379-2381.
[1] 林杰辉, 潘永雄, 苏成悦, 孙安全. 高PF全电压可变负载BCM单级APFC反激变换器环路设计[J]. 广东工业大学学报, 2016, 33(03): 26-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!