广东工业大学学报 ›› 2023, Vol. 40 ›› Issue (01): 77-82,91.doi: 10.12052/gdutxb.210098
邹恒1, 高军礼1, 张树文1, 宋海涛2
Zou Heng1, Gao Jun-li1, Zhang Shu-wen1, Song Hai-tao2
摘要: 为提升围棋对弈与教学过程中的交互性,设计了一种用于围棋机器人的落子指引装置,包括视觉处理模块与运动控制模块。针对视觉处理模块,提出一种基于多尺度检测的标准棋盘图像提取方法,提高了棋盘图像提取的稳定性。对棋盘中的反光区域采用单独的棋子检测器进行检测,提高了不均匀光照区域棋子的检测效果。针对运动控制模块,利用高精度数字舵机和激光指引器构建运动执行机构,并采用伸缩关节模拟激光光路实现运动学建模。提出一种基于透视变换的误差补偿方法,实现关节变量的映射,并通过仿真计算完成运动末端位置补偿。最后,通过实验对视觉模块的准确性与运动控制模块误差补偿方法的有效性进行了验证。
中图分类号:
[1] 张顺, 严宏志, 韩奉林, 等. 基于ARM和freeRTOS的围棋机器人控制器设计[J]. 制造业自动化, 2018, 40(1): 28-32. ZHAGN S, YAN H Z, HAN F L, et al. Design of go robot controller based on ARM and freeRTOS [J]. Manufacturing Automation, 2018, 40(1): 28-32. [2] MATUSZEK C, MAYTON B, AIMI R, et al. Gambit: an autonomous chess-playing robotic system[C]//2011 IEEE International Conference on Robotics and Automation. Shanghai: IEEE, 2011: 4291-4297. [3] KOŁOSOWSKI P, WOLNIAKOWSKI A, MIATLIUK K. Collaborative robot system for playing chess[C]//2020 International Conference Mechatronic Systems and Materials (MSM) . Bialytok, Poland: IEEE, 2020. [4] WANG H B, SHI M. Recognizing chessboard and positioning checkboard in Chinese chess game System[C]//2014 Fourth International Conference on Communication Systems and Network Technologies (CSNT 2014) . Bhopal, India: IEEE, 2014: 1182-1186. [5] SONG J. LI S S. A robust algorithm for Go image recognition in Go game[C]//2018 IEEE 4th International Conference on Computer and Communications (ICCC) . Chengdu: IEEE, 2018: 1397-1401. [6] SONG J, YANG M Z. A calibration method for the vision system of go-robot[C]//2019 6th International Conference on Systems and Informatics (ICSAI) . Shanghai: IEEE, 2019: 1157-1162. [7] 王亚杰, 张云博, 吴燕燕, 等. 不均匀光照下的通用棋子定位方法[J]. 计算机应用, 2020, 40(12): 3490-3498. WANG Y J, ZHANG Y B, WU Y Y, et al. General chess piece positioning method under uneven illumination [J]. Journal of Computer Applications, 2020, 40(12): 3490-3498. [8] 史晓佳, 张福民, 曲兴华, 等. KUKA工业机器人位姿测量与在线误差补偿[J]. 机械工程学报, 2017, 53(8): 1-7. SHI X J, ZHANG F M, QU X H, et al. Position and attitude measurement and online errors compensation for KUKA industrial robots [J]. Journal of Mechanical Engineering, 2017, 53(8): 1-7. [9] 王龙飞, 李旭, 张丽艳, 等. 工业机器人定位误差规律分析及基于ELM算法的精度补偿研究[J]. 机器人, 2018, 40(6): 843-851. WANG L F, LI X, ZHANG L Y, et al. Analysis of the positioning error of industrial robots and accuracy compensation based on ELM algorithm [J]. Robot, 2018, 40(6): 843-851. [10] 杨文韬, 詹军, 佘勇, 等. 工业机器人绝对定位精度优化方法综述[J]. 表面工程与再制造, 2019, 19(2): 28-32. [11] 周炜, 廖文和, 田威. 基于空间插值的工业机器人精度补偿方法理论与试验[J]. 机械工程学报, 2013, 49(3): 42-48. ZHOU W, LIAO W H, TIAN W. Theory and experiment of industrial robot accuracy compensation method based on spatial interpolation [J]. Journal of Mechanical Engineering, 2013, 49(3): 42-48. [12] 周炜, 廖文和, 田威, 等. 基于粒子群优化神经网络的机器人精度补偿方法研究[J]. 中国机械工程, 2013, 24(2): 174-179. ZHOU W, LIAO W H, TIAN W, et al. Method of industrial robot accuracy compensation based on particle swarm optimization neural network [J]. China Mechanical Engineering, 2013, 24(2): 174-179. [13] ANGELIDIS A, VOSNIAKOS G C. Prediction and compensation of relative position error along industrial robot end-effector paths [J]. International Journal of Precision Engineering and Manufacturing, 2014, 15: 63-73. [14] SHI J B, TOMASI C. Good features to track[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA: IEEE, 1994: 593-600. [15] 李鹏俊, 李建增, 宋瑶, 等. 基于仿真的无人机遥感图像拼接误差分析[J]. 计算机应用, 2015, 35(4): 1116-1119. LI P J, LI J Z, SONG Y, et al. Error analysis of unmanned aerial vehicle remote sensing images stitching based on simulation [J]. Journal of Computer Applications, 2015, 35(4): 1116-1119. |
[1] | 刘信宏, 苏成悦, 陈静, 徐胜, 罗文骏, 李艺洪, 刘拔. 高分辨率桥梁裂缝图像实时检测[J]. 广东工业大学学报, 2022, 39(06): 73-79. |
[2] | 丘展春, 费伦科, 滕少华, 张巍. 余弦相似度保持的掌纹识别算法[J]. 广东工业大学学报, 2022, 39(03): 55-62. |
[3] | 揭云飞, 王峰, 钟有东, 智凯旋, 熊超伟. 基于地面特征的单目视觉机器人室内定位方法[J]. 广东工业大学学报, 2020, 37(05): 31-37. |
[4] | 钟映春, 吕帅, 罗鹏, 简裕涛, 褚千琨. 烤瓷牙内部缺陷的图像检测及其特征统计分析[J]. 广东工业大学学报, 2018, 35(01): 1-5. |
[5] | 邹庆胜, 汪仁煌, 明俊峰. 基于机器视觉的瓷砖多参数分类系统的设计[J]. 广东工业大学学报, 2010, 27(4): 46-49. |
[6] | 袁西霞; 岳建华; 赵贤任; . MATLAB在中值滤波改进算法中的应用[J]. 广东工业大学学报, 2007, 24(1): 33-35. |
[7] | 薛岚燕; 郑胜林; 潘保昌; 陈箫枫; . 基于神经网络的灰度图像阈值分割方法[J]. 广东工业大学学报, 2005, 22(4): 67-72. |
[8] | 苏成悦; 郑光昭; . 利用光折变晶体实现多灰度级图像的区域分割[J]. 广东工业大学学报, 2000, 17(4): 89-92. |
|