广东工业大学学报 ›› 2024, Vol. 41 ›› Issue (03): 36-42.doi: 10.12052/gdutxb.230070

• 材料科学与技术 • 上一篇    下一篇

树枝状介孔二氧化硅负载纳米银用于太阳能驱动的清洁水生产

余芳盈1, 欧玮辉2, 王玉洁1, 何军2   

  1. 1. 广东工业大学 环境科学与工程学院, 广东 广州 510006;
    2. 广东工业大学 轻工化工学院, 广东 广州 510006
  • 收稿日期:2023-05-17 出版日期:2024-05-25 发布日期:2024-05-25
  • 通信作者: 王玉洁(1977-),女,副教授,硕士生导师,博士,主要研究方向为等离子体复合材料的制备与应用研究,E-mail:yjwang@gdut.edu.cn
  • 作者简介:余芳盈(1998-),女,硕士研究生,主要研究方向为等离子体复合材料的制备与应用研究,E-mail:2112007032@mail2.gdut.edu.cn
  • 基金资助:
    广东省基础与应用基础研究基金资助项目(2019A1515011603)

Dendritic Mesoporous Silica Loaded with Nanostructured Silver for Solar-driven Clean Water Production

Yu Fang-ying1, Ou Wei-hui2, Wang Yu-jie1, He Jun2   

  1. 1. School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; 2. School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2023-05-17 Online:2024-05-25 Published:2024-05-25

摘要: 合成了树枝状介孔二氧化硅纳米颗粒(Dendritic Mesoporous Silica Nanoparticles, DMSNs) ,随后通过化学还原法在其孔道中装载纳米银(Ag) ,最终得到Ag@DMSNs复合物。由于纳米银被固定在DMSNs孔道中,因此不易发生团聚,且纳米银的等离激元耦合效应使Ag@DMSNs在太阳辐射范围内具有强的广谱吸收。更重要的是,等离激元弛豫过程中的热效应可以将太阳能高效转化成热,例如,Ag@DMSNs在一个模拟太阳光照射下5 min内(1 kW·m-2, 420~2500 nm) 即可使其表面温度从26 ℃升温至70 ℃。将Ag@DMSNs负载于多孔的聚氨酯泡沫材料上,其在一个太阳辐照下的水蒸发速率可达到1.10 kg·m-2·h-1,且在模拟海水中也能保持较好的稳定性能。此外,在Ag@DMSNs复合物中纳米银等离激元的弛豫过程中产生的热电子可以有效去除水中污染物,如降解亚甲基蓝。这些结果表明,合理构筑等离激元耦合模式,并利用等离激元弛豫过程中的热效应和热电子效应是实现太阳能驱动的清洁水生产的有效途径,这将为解决日益严峻的淡水稀缺问题提供新思路和新材料。

关键词: 等离激元, 纳米银, 介孔二氧化硅, 太阳能界面水蒸发, 光热转化

Abstract: The Ag@DMSNs composite was prepared by synthesizing the dendritic mesoporous silica nanoparticles (DMSNs) and subsequently loading the nanostructured Ag in the pore channels of the DMSNs via chemical reduction. Thus-obtained Ag@DMSNs feature an intensive and board absorption for the solar irradiation due to the plasmonic coupling of Ag nanostructures, which are anchored in the pore channels of DMSNs and not prone to aggregation. More importantly, the thermal effect of plasmonic relaxation can efficiently convert solar energy into heat. For example, Ag@DMSNs can increase its surface temperature from 26 ℃ to 70 ℃ within 5 minutes under one sun (1 kW·m-2, 420~2500 nm) . When Ag@DMSNs are loaded on the porous polyurethane foam material, the water evaporation rate reaches 1.10 kg·m-2·h-1 under one sun, and they also exhibit excellent stability in simulated seawater. In addition, the thermal electrons produced during the relaxation of the Ag nanoparticle plasmon in the Ag@DMSNs complex can effectively remove contaminants from water, such as the degradation of methylene blue. These results show that it is an effective way to realize solar-powered clean water production by rational construction of the plasmonic coupling model and utilizing the thermal and hot-electron effect of plasmonic relaxation process, opening new avenues to tackling the deteriorating problem of fresh water scarcity.

Key words: plasmon, nanostructured silver, mesoporous silica, solar interfacial evaporation, photothermal conversion

中图分类号: 

  • TK519
[1] TANG W, PEI Y, ZHENG H, et al. Twenty years of China's water pollution control: experiences and challenges [J]. Chemosphere, 2022, 295: 133875.
[2] DOLAN F, LAMONTAGNE J, LINK R, et al. Evaluating the economic impact of water scarcity in a changing world [J]. Nature Communications, 2021, 12(1): 1915.
[3] LU Y, ZHANG H, FAN D, et al. Coupling solar-driven photothermal effect into photocatalysis for sustainable water treatment [J]. Journal of Hazardous Materials, 2022, 423: 127128.
[4] VAN-DUONG D, NGOC HUNG V, YUN S. Recent advances and challenges for solar-driven water evaporation system toward applications [J]. Nano Energy, 2020, 68: 104324.
[5] PANG Y, ZHANG J, MA R, et al. Solar-thermal water evaporation: a review [J]. ACS Energy Letters, 2020, 5(2): 437-456.
[6] GUAN W, GUO Y, YU G. Carbon materials for solar water evaporation and desalination [J]. Small, 2021, 17(48): 200717.
[7] DING T, ZHOU Y, ONG W L, et al. Hybrid solar-driven interfacial evaporation systems: beyond water production towards high solar energy utilization [J]. Materials Today, 2021, 42: 178-191.
[8] ZHAO F, GUO Y, ZHOU X, et al. Materials for solar-powered water evaporation [J]. Nautre Reviews Materials, 2020, 5(5): 388-401.
[9] XIE Z, DUO Y, LIN Z, et al. The rise of 2D photothermal materials beyond graphene for clean water production [J]. Advanced Science, 2020, 7(5): 1902236.
[10] LIU Y, ZHAO J, ZHANG S, et al. Advances and challenges of broadband solar absorbers for efficient solar steam generation [J]. Environmental Science-Nano, 2022, 9(7): 2264-2296.
[11] 宋玲利, 张仁元, 毛凌波. 纳米流体光热转换特性的研究[J]. 广东工业大学学报, 2011, 28(2): 56-58.
SONG L L, ZHANG R Y, MAO L B. A study of photothermal conversion of manofluids [J]. Journal of Guangdong University of Technology, 2011, 28(2): 56-58.
[12] 李元臻, 周佩蕾, 王菲, 等. 太阳能界面蒸发光热材料的研究进展[J]. 现代化工, 2021, 41(8): 29-32.
LI Y Z, ZHOU P L, WANG F, et al. Research progress on photothermal materials for solar energy interface evaporation [J]. Modern Chemical Industry, 2021, 41(8): 29-32.
[13] BRONGERSMA M L, HALAS N J, NORDLANDER P. Plasmon-induced hot carrier science and technology [J]. Nature Nanotechnoly, 2015, 10(1): 25-34.
[14] SONG G, YUAN Y, LIU J, et al. Biomimetic superstructures assembled from Au nanostars and nanospheres for efficient solar evaporation [J]. Advanced Sustainable Systems, 2019, 3(6): 1900003.
[15] SUN Z, WANG J, WU Q, et al. Plasmon based double-layer hydrogel device for a highly efficient solar vapor generation [J]. Advanced Functional Materials, 2019, 29(29): 1901312.
[16] HUANG Z, LI S, CUI X, et al. A broadband aggregation-independent plasmonic absorber for highly efficient solar steam generation [J]. Journal of Materials Chemistry A, 2020, 8(21): 10742-10746.
[17] WANG M, WANG P, ZHANG J, et al. A ternary Pt/Au/TiO2-decorated plasmonic wood carbon for high-efficiency interfacial solar steam generation and photodegradation of tetracycline [J]. ChemSusChem, 2019, 12(2): 467-472.
[18] ROSS M B, BLABER M G, SCHATZ G C. Using nanoscale and mesoscale anisotropy to engineer the optical response of three-dimensional plasmonic metamaterials [J]. Nature Communications, 2014, 5: 4090.
[19] CAMPOS A, TROC N, COTTANCIN E, et al. Plasmonic quantum size effects in silver nanoparticles are dominated by interfaces and local environments [J]. Nature Physics, 2019, 15(3): 275-280.
[20] 徐步锋, 吴大雄. 单分散银纳米颗粒的粒径调控及其光热转换性能[J]. 青岛科技大学学报(自然科学版), 2015, 36(02): 160-165.
XU B F, WU D X. Particle size control and photo-thermal conversion property of mono-dispersed silver particles [J]. Journal Qingdao University of Science and Technology (Nature Science Edition), 2015, 36(02): 160-165.
[21] FANG J, LIU Q, ZHANG W, et al. Ag/diatomite for highly efficient solar vapor generation under one-sun irradiation [J]. Journal of Materials Chemistry A, 2017, 5(34): 17817-17821.
[22] 杨兆华, 成鸿静, 杨弋, 等. 聚乙烯醇载银海绵的制备及界面光热驱动水蒸发性能[J]. 高等学校化学学报, 2022, 43(10): 267-273.
YANG Z H, CHENG H J, YANG Y, et al. Preparation of silver-loaded polyvinyl alcohol sponge and its interfacial photothermal driven water evaporation performance [J]. Chemical Journal of Chinese Universities, 2022, 43(10): 267-273.
[23] LI X, CHOY W C H, LU H, et al. Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles [J]. Advanced Functional Materials, 2013, 23(21): 2728-2735.
[24] YANG H, LIU Y, SHEN Q, et al. Mesoporous silica microcapsule-supported Ag nanoparticles fabricated via nano-assembly and its antibacterial properties [J]. Journal of Materials Chemisty, 2012, 22(45): 24132-24138.
[1] 张然, 梁亮, 宛焱, 胡龙. 纳米银水性抗菌木器涂料的研制[J]. 广东工业大学学报, 2015, 32(04): 40-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!