广东工业大学学报

• • 上一篇    下一篇

陆态网络GPS速度场噪声模型分析

龚一航, 郑博文, 王华, 吴希文   

  1. 广东工业大学 土木与交通工程学院, 广东 广州 510006
  • 收稿日期:2023-06-21 出版日期:2024-05-25 发布日期:2024-05-25
  • 通信作者: 王华(1978-),男,教授,博士,主要研究方向为大陆形变与地震周期,E-mail:ehwang@163.com
  • 作者简介:龚一航(1999-),男,硕士研究生,主要研究方向为GPS数据处理
  • 基金资助:
    国家重点研发计划项目(2017YFC1500501) ;国家自然科学基金资助项目(42274001)

An Analysis of Noise Model in Land-based Network GPS Velocity Field

Gong Yi-hang, Zheng Bo-wen, Wang Hua, Wu Xi-wen   

  1. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2023-06-21 Online:2024-05-25 Published:2024-05-25

摘要: GPS观测会受到外界因素影响,导致其时间序列中含有各类噪声,需要采用合适的噪声模型来估计其速度精度。本文利用频谱分析和极大似然估计的方法对中国大陆地壳运动观测网络的259个GPS连续站的时间序列进行了最优噪声模型分析。通过频谱分析法,认为“中国地壳运动观测网络”(CMONOC-I/II,简称“陆态网络”)连续站主要的噪声模型为白噪声加闪烁噪声。利用最优噪声模型与使用FOGMEx模型所计算的速度差距不大,速度不确定性分别是FOGMEx模型的1.5±0.7倍(E)、1.0±0.5倍(N)、1.8±1.1倍(U)。从每年的连续站数据中抽取连续3 d的观测数据作为模拟流动站,使用原连续站的协方差矩阵和降低自由度法分别估计模拟流动站的速度不确定性,两者之比分别为0.8±0.2(E)、1.0±0.2(N)、0.9±0.2(U),速度则无明显差异。由此,对于中国大陆占绝大多数的真实流动站,本文建议采用降低自由度(即假定流动站观测值个数为观测年数)来估计其不确定度。

关键词: GPS, 时间序列, 噪声模型, 速度不确定性

Abstract: GPS observations are influenced by external factors, resulting in various types of noise in their time series. It is necessary to use appropriate noise model to estimate the station’s velocity accuracy. Spectral analysis method and maximum likelihood estimation method are used to perform optimal noise model analysis on the time series of 259 GPS continuous stations in the China Continental Crustal Movement Observation Network. Three consecutive days of observation data are extracted from the annual continuous station data as simulated campaign stations. The main noise models of the continuous stations of China Crustal Movement Observation Network of China are white noise plus flicker noise resulted from spectral analysis method. The difference in velocity calculated using the optimal noise model and the FOGMEx model is not significant, and the speed uncertainty is 1.5 ± 0.7 times (E), 1.0 ± 0.5 times (N), and 1.8 ± 1.1 times (U) of the FOGMEx model, respectively. For the simulated campaign station, the velocity uncertainty obtained from the original continuous station covariance matrix is 0.8 ± 0.2 times (E), 1.0 ± 0.2 times (N), and 0.9 ± 0.2 times (U), respectively, compared with the velocity uncertainty estimated by the noise model established by reducing its degree of freedom and there is no significant difference in velocity. Therefore, for the majority of real campaign stations in China’s mainland, reducing the degrees of freedom (i.e., assuming the number of observed values at campaign stations equals the number of years of observation) is suggested to estimate their uncertainty.

Key words: GPS, time series, noise mode, velocity uncertainty

中图分类号: 

  • P223
[1] TEFERLE F N, WILLIAMS S D P, KIERULF H P, et al. A continuous GPS coordinate time series analysis strategy for high-accuracy vertical land movements [J]. Physics and Chemistry of the Earth, Parts A/B/C, 2008, 33(3-4): 205-216.
[2] SERPELLONI E, CASULA G, GALVANI A, et al. Data analysis of permanent GPS networks in Italy and surrounding regions: application of a distributed processing approach [J]. Annals of Geophysics, 2006, 49(4): 897-928.
[3] ZHENG G, WANG H, WRIGHT T J, et al. Crustal deformation in the india-eurasia collision zone from 25 years of GPS measurements [J]. Journal of Geophysical Research: Solid Earth, 2017, 122(11): 9290-9312.
[4] WANG M, SHEN Z K. Present-day crustal deformation of continental China derived from GPS and its tectonic implications [J]. Journal of Geophysical Research:Solid Earth, 2020, 125(2): 1-22.
[5] 甘卫军, 李强, 张锐, 等. 中国大陆构造环境监测网络的建设与应用[J] 工程研究-跨学科视野中的工程. 2012, 4(4) : 324-331.
GANG W J, LI Q, ZHANG R, et al. Construction and application of tectonic and environmental observation network of mainland China[J]. Journal of Engineering Studies, 2020, 125(2) : 1-22.
[6] LIU J N, GE M R, PANDA software and its preliminary result of positioning and orbit determination[J]. Wuhan University Journal of Natural Sciences, 2003, 8(2) : 603-609.
[7] BOS M S, FERNANDES R M S, WILLIAMS S D P, et al. Fast error analysis of continuous GNSS observations with missing data [J]. Journal of Geodesy, 2013, 87(4): 351-360.
[8] ALOTHMAN A O, FERNANDES R M, BOS M S, et al. Angular velocity of Arabian plate from multi-year analysis of GNSS data [J]. Arabian Journal of Geosciences, 2016, 9(8): 520-529.
[9] ZHANG J, BOCK Y, JOHNSON H, et al. Southern California permanent GPS geodetic array: error analysis of daily position estimates and site velocities [J]. Journal of Geophysical Research:Solid Earth, 1997, 102(B8): 18035-18055.
[10] MAO A, HARRISON C G A, DIXON T H. Noise in GPS coordinate time series [J]. Journal of Geophysical Research:Solid Earth, 1999, 104(B2): 2797-2816.
[11] WILLIAMS S D P. The effect of coloured noise on the uncertainties of rates estimated from geodetic time series [J]. Journal of Geodesy, 2003, 76(9-10): 483-494.
[12] WILLIAMS S D P. Error analysis of continuous GPS position time series [J]. Journal of Geophysical Research, 2004, 109(B3): 483-494.
[13] WANG W, QIAO X, WANG D, et al. Spatiotemporal noise in GPS position time-series from crustal movement observation network of China [J]. Geophysical Journal International, 2019, 216(3): 1560-1577.
[14] 郑博文, 杜向峰, 詹松辉, 等. 中国大陆GPS连续站时间序列噪声分析[J] 广东工业大学学报. 2022, 39(3) : 70-76.
ZHENG B W, DU X F, ZHANG S H, et al. Noise analysis of continuous GPS time series in China continent[J]. Journal of Guangdong University of Technology, 2022, 39(03) : 70-76.
[15] 杨登科, 邓连生, 安向东, 等. IGS基准站坐标时间序列最优噪声模型变化探讨[J] 测绘地理信息, 2016, 41(1) : 7-10.
YANG D K, DENG L S, AN X D, et al. Optimal noise models for coordinate time series of IGS reference station[J], Journal of Geomatics, 2016, 41(1) : 7-10.
[16] HERRING T. MATLAB Tools for viewing GPS velocities and time series [J]. GPS Solutions, 2003, 7(3): 194-199.
[1] 杨小鸽, 王华, 柏俊, 吴希文, 李廷俊, 柏玉超, 皮廷亮. 基于四叉树滤波的InSAR矿区形变监测与分析[J]. 广东工业大学学报, 2023, 40(03): 99-104.
[2] 危由兴, 罗向龙, 胡凌锋, 陈健勇, 梁颖宗, 杨智, 陈颖. 基于时间序列聚合的有机朗肯循环系统优化方法[J]. 广东工业大学学报, 2022, 39(06): 98-106.
[3] 郑博文, 杜向峰, 詹松辉, 吴希文, 王华. 中国大陆GPS连续站时间序列噪声分析[J]. 广东工业大学学报, 2022, 39(03): 70-76,82.
[4] 李振福, 段伟, 李肇坤, 邓昭. 基于“21世纪海上丝绸之路”AIS数据的船舶交通流预测[J]. 广东工业大学学报, 2020, 37(06): 1-8.
[5] 余俊鹏, 何炽荣. GPS-RTK辅助近景摄影测量光束法平差及精度分析[J]. 广东工业大学学报, 2017, 34(06): 73-77.
[6] 后锐,罗智,伍嘉文. 深成指数时间序列的网络拓扑结构研究[J]. 广东工业大学学报, 2013, 30(3): 75-79.
[7] 邹锦华,陆波,周小峰. 全站仪进行跨海面高程测量的应用及验证[J]. 广东工业大学学报, 2012, 29(4): 22-26.
[8] 黄志坚; 傅惠南; 卜焰山; . 弹性浮动研磨机振动结构参数识别[J]. 广东工业大学学报, 2009, 26(3): 34-37.
[9] 张兴福; 于红波; . 模型拟合法进行GPS高程转换的研究及软件开发[J]. 广东工业大学学报, 2008, 25(3): 61-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!