• •
朱骏杰, 刘东峰
Zhu Jun-jie, Liu Dong-feng
摘要: 多尺度特征在点云领域的密集预测任务中至关重要。当前三维点云处理技术主要依赖编码器–解码器框架,通过主干网络提取并融合多尺度特征。然而,这些方法通常采用延迟融合策略,导致特征集成不足。为解决这一问题,本文提出了HRFN3D(High-resolution Feature Network for 3D Point Cloud)模型,一种专为点云分类和分割任务设计的高分辨率特征网络。HRFN3D通过创新性的关系学习模块,在早期阶段进行特征融合,促进低分辨率高语义点与高分辨率低语义点的交互,使高分辨率点在早期阶段就保留高语义信息,优化后续特征学习。在后期,结合不同池化策略生成全局特征向量,并与原始点特征拼接,既保留细节,又增强全局特征的代表性。实验结果显示,HRFN3D在ShapeNetPart数据集上将类平均交并比和实例平均交并比分别提升了2.2个百分点和0.9个百分点,并获得了最佳实例平均交并比86.3%;在ModelNet40数据集上,以4.3 M的参数量实现了91.5%的最高类平均精度。这些结果验证了HRFN3D在多尺度特征处理中的有效性。
中图分类号:
[1] ALEXIOU E, YANG N, EBRAHIMI T. PointXR: a toolbox for visualization and subjective evaluation of point clouds in virtual reality[C]//2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX) . Athlone: IEEE, 2020: 1-6. [2] CHEN Y Q, WANG Q, CHEN H, et al. An overview of augmented reality technology[J]. Journal of Physics: Conference Series, 2019, 1237(2): 022082. [3] AKSOY E E, BACI S, CAVDAR S. Salsanet: fast road and vehicle segmentation in lidar point clouds for autonomous driving[C]//2020 IEEE Intelligent Vehicles Symposium (IV) . Las Vegas: IEEE, 2020: 926-932. [4] LI Y, MA L, ZHONG Z, et al. Deep learning for lidar point clouds in autonomous driving: a review[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(8): 3412-3432. [5] LI X, DU S, LI G, et al. Integrate point-cloud segmentation with 3D LiDAR scan-matching for mobile robot localization and mapping[J]. Sensors, 2019, 20(1): 237. [6] YANG L, LIU Y, PENG J, et al. A novel system for off-line 3D seam extraction and path planning based on point cloud segmentation for arc welding robot[J]. Robotics and Computer-Integrated Manufacturing, 2020, 64: 101929. [7] GUO Y, WANG H, HU Q, et al. Deep learning for 3D point clouds: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(12): 4338-4364. [8] LUO C, YANG X, YUILLE A. Exploring simple 3D multi-object tracking for autonomous driving[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) . Montreal: IEEE, 2021: 10488-10497. [9] ZHAO L, CAI D, SHENG L, et al. 3DVG-Transformer: relation modeling for visual grounding on point clouds[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) . Montreal: IEEE, 2021: 2928-2937. [10] QI C, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Honolulu: IEEE, 2017: 652-660. [11] QI C, SU H, MO K, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[J]. Advances in Neural Information Processing Systems, 2017, 30: 5105-5114. [12] LI Y, BU R, SUN M, et al. PointCNN: convolution on x-transformed points[J]. Advances in Neural Information Processing Systems, 2018, 31: 828-838. [13] YAN X, ZHENG C, LI Z, et al. PointASNL: robust point clouds processing using nonlocal neural networks with adaptive sampling[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Seattle: IEEE, 2020: 5589-5598. [14] WU W, QI Z, FUXIN L. PointConv: deep convolutional networks on 3D point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Long Beach: IEEE, 2019: 9621-9630. [15] QIAN G, LI Y, PENG H, et al. PointNeXt: revisiting pointnet++ with improved training and scaling strategies[J]. Advances in Neural Information Processing Systems, 2022, 35: 23192-23204. [16] ZHAO H, JIANG L, JIA J, et al. Point transformer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) . Montreal: IEEE, 2021: 16259-16268. [17] SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Long Beach: IEEE, 2019: 5693-5703. [18] ZHANG G, LI Z, TANG C, et al. CEDNet: a cascade encoder-decoder network for dense prediction[EB/OL]. arxiv: 2302.06052(2023-02-06) [2023-10-31]. https://arxiv.org/abs/2302.06052. [19] WANG J, SUN K, CHENG T, et al. Deep high-resolution representation learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(10): 3349-3364. [20] YUAN Y, FU R, HUANG L, et al. HRformer: high-resolution transformer for dense prediction[EB/OL]. arxiv: 2110.09408(2021-10-09) [2021-11-07]. https://arxiv.org/abs/2110.09408. [21] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30: 6000-6010. [22] ZHANG G, GE Y, DONG Z, et al. Deep high-resolution representation learning for cross-resolution person re-identification[J]. IEEE Transactions on Image Processing, 2021, 30: 8913-8925. [23] WU X, LAO Y, JIANG L, et al. Point transformer v2: grouped vector attention and partition-based pooling[J]. Advances in Neural Information Processing Systems, 2022, 35: 33330-33342. [24] GUO M, CAI J, LIU Z, et al. PCT: point cloud transformer[J]. Computational Visual Media, 2021, 7: 187-199. [25] THOMAS H, QI C, DESCHAUD J, et al. KPConv: flexible and deformable convolution for point clouds[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) . Seoul: IEEEE, 2019: 6411-6420. [26] WANG Y, SUN Y, LIU Z, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 1-12. [27] MA X, QIN C, YOU H, et al. Rethinking network design and local geometry in point cloud: a simple residual MLP framework[EB/OL]. arxiv: 2202.07123(2022-02-07) [2022-11-29]. https://arxiv.org/abs/2202.07123v2. [28] LIU X, HAN Z, LIU Y, et al. Point2sequence: learning the shape representation of 3D point clouds with an attention-based sequence to sequence network[C]//Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) . Hawaii: AAAI, 2019, 33(01): 8778-8785. [29] ATZMON M, MARON H, LIPMANY. Point convolutional neural networks by extension operators[EB/OL]. arxiv: 1803.10091(2018-03-10) [2018-03-27]. https://arxiv.org/abs/1803.10091. [30] LIU Y, FAN B, XIANG S, et al. Relation-shape convolutional neural network for point cloud analysis[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Long Beach: IEEE, 2019: 8895-8904. [31] SU H, JAMPANI V, SUN D, et al. SplatNet: sparse lattice networks for point cloud processing[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Salt Lake City: IEEE, 2018: 2530-2539. [32] XU Y, FAN T, XU M, et al. SpiderCNN: deep learning on point sets with parameterized convolutional filters[C]//Proceedings of the European Conference on Computer Vision (ECCV) . Munich: CVF, 2018: 87-102. [33] LI Z, GAO P, YUAN H, et al. Exploiting inductive bias in transformer for point cloud classification and segmentation[C]//2023 IEEE International Conference on Multimedia and Expo Workshops (ICMEW) . Brisbane: IEEE, 2023: 140-145. |
[1] | 涂泽良, 程良伦, 黄国恒. 基于局部正交特征融合的小样本图像分类[J]. 广东工业大学学报, 2024, 41(02): 73-83. |
[2] | 熊荣盛, 王帮海, 杨夏宁. 基于蓝图可分离残差蒸馏网络的图像超分辨率重建[J]. 广东工业大学学报, 2024, 41(02): 65-72. |
[3] | 甘孟坤, 曾安, 张小波. 基于Swin-Unet的主动脉再缩窄预测研究[J]. 广东工业大学学报, 2023, 40(05): 34-40. |
[4] | 陈晓荣, 杨雪荣, 成思源, 刘国栋. 基于改进Unet网络的锂电池极片表面缺陷检测[J]. 广东工业大学学报, 2023, 40(04): 60-66,93. |
[5] | 赖东升, 冯开平, 罗立宏. 基于多特征融合的表情识别算法[J]. 广东工业大学学报, 2023, 40(03): 10-16. |
[6] | 谢国波, 林立, 林志毅, 贺笛轩, 文刚. 基于YOLOv4-MP的绝缘子爆裂缺陷检测方法[J]. 广东工业大学学报, 2023, 40(02): 15-21. |
[7] | 刘信宏, 苏成悦, 陈静, 徐胜, 罗文骏, 李艺洪, 刘拔. 高分辨率桥梁裂缝图像实时检测[J]. 广东工业大学学报, 2022, 39(06): 73-79. |
[8] | 杨运龙, 梁路, 滕少华. 一种双路网络语义分割模型[J]. 广东工业大学学报, 2022, 39(01): 63-70. |
[9] | 黄剑航, 王振友. 基于特征融合的深度学习目标检测算法研究[J]. 广东工业大学学报, 2021, 38(04): 52-58. |
[10] | 高俊艳, 刘文印, 杨振国. 结合注意力与特征融合的目标跟踪[J]. 广东工业大学学报, 2019, 36(04): 18-23. |
[11] | 孙伟, 钟映春, 谭志, 连伟烯. 多特征融合的室内场景分类研究[J]. 广东工业大学学报, 2015, 32(1): 75-79. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 38
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 82
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|