广东工业大学学报 ›› 2023, Vol. 40 ›› Issue (04): 60-66,93.doi: 10.12052/gdutxb.220161

• 计算机科学与技术 • 上一篇    下一篇

基于改进Unet网络的锂电池极片表面缺陷检测

陈晓荣, 杨雪荣, 成思源, 刘国栋   

  1. 广东工业大学 机电工程学院,广东 广州 510006
  • 收稿日期:2022-10-27 出版日期:2023-07-25 发布日期:2023-08-02
  • 通信作者: 杨雪荣(1978-),女,副教授,博士,硕士生导师,主要研究方向为逆向工程技术、计算机视觉检测技术,E-mail: yxrlyl@163.com
  • 作者简介:陈晓荣 (1998-),男,硕士研究生,主要研究方向为虚拟现实
  • 基金资助:
    广东省高等教育教学改革项目(粤教高函[2020]20号) ;广东省研究生教育创新计划项目(2021JGXM043) ;校级“本科教学工程”项目(广工大教字[2020]22号)

Surface Defect Detection of Lithium Battery Electrodes Based on Improved Unet Network

Chen Xiao-rong, Yang Xue-rong, Cheng Si-yuan, Liu Guo-dong   

  1. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2022-10-27 Online:2023-07-25 Published:2023-08-02

摘要: 为避免锂电池由于极片表面缺陷导致寿命缩短或出现安全事故等问题,需要研究高效准确的锂电池极片缺陷检测方法。本文使用结构简单的Unet语义分割网络对锂电池进行缺陷分割。为提高分割精度,首先用与Unet编码结构相似的VGG16替换原网络中的编码结构,以获取训练好的预训练权重;然后将简易的融合金字塔网络(Simply Fusion Pyramid Network,SFPN)的特征融合模块加入Unet网络的跳跃连接上,避免特征图之间出现较大的信息差异;最后运用标签平滑来优化损失函数,防止网络出现过拟合现象。通过实验验证,本文方法优化后的语义分割网络准确率提升至93.70%,误分割、分割不连续等现象出现概率明显降低,该优化流程具有一定实用价值。

关键词: 缺陷检测, Unet, 特征融合, 标签平滑

Abstract: In order to avoid the problems of life shortening or safety accidents caused by the surface defects of lithium batteries, it is necessary to study an efficient and accurate methods for lithium battery electrode plate defect detection. In this research, the simple Unet semantic segmentation network is used to detect defects of lithium battery. In order to improve the segmentation accuracy, first the coding structure in the original network is replaced with VGG16, which is similar to the Unet coding structure, to obtain the pre-training weights had been trained. Then, feature fusion module of the simply fusion pyramid network (SFPN) is added to the skip connection of the Unet network to avoid large information differences between feature maps. Finally, label smoothing is applied to optimize the loss function to prevent the network from overfitting. Through experimental verification, the accuracy of the semantic segmentation network optimized by the proposed method is improved to 93.70%, and the probability of false segmentation and segmentation discontinuity is significantly reduced. This optimization process has certain practical value.

Key words: defect detection, Unet, feature fusion, label smoothing

中图分类号: 

  • TP391.41
[1] 王大为, 罗悦齐. 纯电动汽车发展面临的问题[J]. 汽车文摘, 2019(8): 22-31.WANG D W, LUO Y Q. Problems faced by electric vehicles[J]. Automotive Digest, 2019(8): 22-31.
[2] 汤勃, 孔建益, 伍世虔. 机器视觉表面缺陷检测综述[J]. 中国图象图形报, 2017, 22(12): 1640-1663.TANG B, KONG J Y, WU S Q. Review of surface defect detection based on machine vision[J]. Journal of Image and Graphics, 2017, 22(12): 1640-1663.
[3] 谢永杰, 智贺宁. 基于机器视觉的图像识别技术研究综述[J]. 科学技术创新, 2018(7): 74-75
[4] 吴凯, 杨新志. 浅述人工智能的深度学习[J]. 石河子科技, 2020(6): 44-45
[5] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):. 84-90.
[6] 周佳禾, 宫元九. 利用卷积神经网络检测锂电池电极缺陷[J]. 电子测量技术, 2019, 42(19): 182-186.ZHOU J H, GONG Y J, Detection of electrode defects in lithium batteries based on convolutional neural networks[J]. Electronic Measurement Technology, 2019, 42(19): 182-186.
[7] 周佳禾, 宫临凡, 王盛瑶. 方形卷绕式锂电池电极褶皱检测方法研究[J]. 仪表技术与传感器, 2021(5): 107-111.ZHOU J H, GONG L F, WANG S Y. Research on detection of electrode fold of spirally wound flattened lithium batteries[J]. Instrument Technique and Sensor, 2021(5): 107-111.
[8] 黄梦涛, 连一鑫. 基于改进Canny算子的锂电池极片表面缺陷检测[J]. 仪器仪表学报, 2021, 42(10): 199-209.HUANG M T, LIAN Y X. Lithium battery electrode plate surface defect detection based on improved Canny operator[J]. Chinese Journal of Scientific Instrument, 2021, 42(10): 199-209.
[9] 张旭. 基于深度卷积神经网络的铝材表面缺陷检测[D]. 上海: 华东理工大学, 2020.
[10] 章云, 王晓东. 基于受限样本的深度学习综述与思考[J]. 广东工业大学学报, 2022, 39(5): 1-8.ZHANG Y, WANG X D. A review and thinking of deep learning with a restricted number of samples[J]. Journal of Guangdong University of Technology, 2022, 39(5): 1-8.
[11] ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//Fleet D. European Conference on Computer Vision. Cham: Springer, 2014: 818-833.
[12] SANDLER M, HOWARD A, ZHU M, et al. Mobilenetv2: inverted residuals and linear bottlenecks[C]//The IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510-4520.
[13] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[14] 黄剑航, 王振友. 基于特征融合的深度学习目标检测算法研究[J]. 广东工业大学学报, 2021, 38(4): 52-58.HUANG J H, WANG Z Y. A research on deep learning object detection algorithm based on feature fusion.[J]. Journal of Guangdong University of Technology, 2021, 38(4): 52-58.
[15] DENG J, DONG W, SOCHER R, et al. Imagenet: a large-scale hierarchical image database[C]//2009 IEEE Conference On Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009: 248-255.
[1] 赖东升, 冯开平, 罗立宏. 基于多特征融合的表情识别算法[J]. 广东工业大学学报, 2023, 40(03): 10-16.
[2] 谢国波, 林立, 林志毅, 贺笛轩, 文刚. 基于YOLOv4-MP的绝缘子爆裂缺陷检测方法[J]. 广东工业大学学报, 2023, 40(02): 15-21.
[3] 谢胜利, 廖文建, 白玉磊, 梁勇, 董博. 相衬光学相干层析在无损检测领域的应用[J]. 广东工业大学学报, 2021, 38(06): 20-28.
[4] 黄剑航, 王振友. 基于特征融合的深度学习目标检测算法研究[J]. 广东工业大学学报, 2021, 38(04): 52-58.
[5] 高俊艳, 刘文印, 杨振国. 结合注意力与特征融合的目标跟踪[J]. 广东工业大学学报, 2019, 36(04): 18-23.
[6] 孙伟, 钟映春, 谭志, 连伟烯. 多特征融合的室内场景分类研究[J]. 广东工业大学学报, 2015, 32(1): 75-79.
[7] 李刚,汪仁煌,李佩. 基于BP神经网络的工艺球缺陷检测[J]. 广东工业大学学报, 2012, 29(1): 46-49.
[8] 邹庆胜, 汪仁煌, 明俊峰. 基于机器视觉的瓷砖多参数分类系统的设计[J]. 广东工业大学学报, 2010, 27(4): 46-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!