[1] CAI R C, ZHANG Z J, HAO Z F. Sada:a general framework to support robust causation discovery[C]//International Conference on Machine Learning. Atlanta, GA, USA:ICML, 2013, 28:208-216.<br />
[2] XIE X C, GENG Z. A recursive method for structural learning of directed acyclic graphs[J]. Journal of Machine Learning Research, 2008, 9(3):459-483<br />
[3] GENG Z, WANG C, ZHAO Q. Decomposition of search for v-structures in dags[J]. Journal of Multivariate Analysis, 2005, 96(2):282-294<br />
[4] XIE X C, GENG Z, ZHAO Q. Decomposition of structural learning about directed acyclic graphs[J]. Artificial Intelligence, 2006, 170(4-5):422-439<br />
[5] LIU H, ZHOU S G, LAM W, <i>et al</i>. A new hybrid method for learning bayesian networks:separation and reunion[J]. Knowledge-Based Systems, 2017, 121:185-197<br />
[6] PEARL J. Causality[M]. Cambridge:Cambridge University Press, 2009:639-648.<br />
[7] KLOKS T, KRATSCH D. Finding all minimal separators of a graph[J]. Lecture Notes in Computer Science, 1993, 842(3):759-768<br />
[8] ZHANG K, PETERS J, JANZING D, <i>et al</i>. Kernel-based conditional independence test and application in causal discovery[J]. Computer Science, 2012, 06(8):895-907<br />
[9] EDWARDS D. Introduction to graphical modelling[M]. New York:Springer, 2000:235-254.<br />
[10] FUKUMIZU K, GRETTON A, SUN X, <i>et al</i>. Kernel measures of conditional dependence[J]. Advances in Neural Information Processing Systems, 2007, 20(1):167-204<br />
[11] ZHANG H, ZHOU S G, ZHANG K, et al. Causal discovery using regression-based conditional independence tests[C]//AAAI Conference on Artificial Intelligence. San Francisco, California, USA:AAAI, 2017:1250-1256.<br />
[12] ZHANG K, PETERS J, JANZING D, et al. Kernel-based conditional independence test and application in causal discovery[M]. USA:AUAI Press, 2011:804-813.<br />
[13] ZHANG K, WANG Z K, ZHANG J J, et al. On estimation of functional causal models:general results and application to post-nonlinear causal model[C]//ACM Transactions on Intelligent Systems and Technologies. New York, NY, USA:ACM, 2015, 7(2):1-22.<br />
[14] CAI R C, ZHANG Z J, HAO Z F. Bassum:a bayesian semi-supervised method for classification feature selection[J]. Pattern Recognition, 2011, 44(4):811-820<br />
[15] CAI R C, ZHANG Z J, HAO Z F. Causal gene identification using combinatorial v-structure search[J]. Neural Networks, 2013, 43:63-71<br />
[16] MOOIJ J M, PETERS J, JANZING D, <i>et al</i>. Distinguishing cause from effect using observational data:methods and benchmarks[J]. The Journal of Machine Learning Research, 2016, 17(1):1103-1204<br />
[17] HOYER P O, JANZING D, MOOIJ J M, <i>et al</i>. Nonlinear causal discovery with additive noise models[J]. Advances in neural Information Processing Systems, 2009:689-696<br />
[18] PETERS J, JANZING D, SCHOLKOPF B. Causal inference on discrete data using additive noise models[C]//IEEE Transactions on Pattern Analysis & Machine Intelligence. Washington DC:IEEE Computer Society, 2011:2436-2450.<br />
[19] SHIMIZU S, HOYER P. O, HYVARINEN A, <i>et al</i> A linear non-Gaussian acyclic model for causal discovery[J]. the Journal of Machine Learning Research, 2006, 7:2003-2030<br />
[20] JUDEA P. Probability reasoning in intelligent systems networks of plausible inference[J]. Computer Science Artificial Intelligence, 1988, 70(2):1022-1027<br />
[21] KOLLER D, FRIEDMAN N. Probabilistic graphical models:principles and techniques[M]. Cambridge:Massachusetts Institute of Technology Press, 2009:56-72.<br />
[22] BUDHATHOKI K, VREEKEN J. Causal inference by compression[C]//2016 IEEE 16th International Conference on Data Mining. Barcelona, Spain:IEEE, 2016:41-50.<br />
[23] JANZING D, STEUDEL B, SHAJARISALES N, <i>et al</i>. Justifying information-geometric causal inference[J]. Measures of Complexity, 2015:253-265<br />
[24] SCHOLKOPF B, JANZING D, PETERS J, et al. Semi-supervised learning in causal and anticausal settings[M]. Berlin Heidelberg:Springer, 2013:129-141.<br />
[25] SGOURITSA E, JANZING D, HENNIG P, <i>et al</i>. Inference of cause and effect with unsupervised inverse regression[J]. Artificial Intelligence and Statistics, 2015:847-855<br />
[26] SPIRTES P, GLYMOUR C N, SCHEINES R. Causation, prediction and search[M]. New York:Springer, 1993, 45(3):272-273.<br />
[27] BABA K, SHIBATA R, SIBUYA M. Partial correlation and conditional correlation as measures of conditional independence[J]. Australian and New Zealand Journal of Statistics, 2004, 46(4):657-664 |