Journal of Guangdong University of Technology ›› 2022, Vol. 39 ›› Issue (01): 63-70.doi: 10.12052/gdutxb.210014
Previous Articles Next Articles
Yang Yun-long, Liang Lu, Teng Shao-hua
CLC Number:
[1] YAO XW, HAN J W, CHENG G, et al. Semantic annotation of high-resolution satellite images via weakly supervised learning [J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6): 3660-3671. [2] MARTHA T R, KERLE N, WESTEN C J, et al. Segment optimization and data-driven thresholding for knowledge-based landslide detection by object-based image analysis [J]. IEEE Transactions on Geoence & Remote Sensing, 2011, 49(12): 4928-4943. [3] YIN H, PFLUGMACHER D, LI A, et al. Land use and land cover change in Inner Mongolia-understanding the effects of China's re-vegetation programs [J]. Remote Sensing of Environment, 2018, 204: 918-930. [4] AHMAD K, POGORELOV K, RIEGLER M, et al. Automatic detection of passable roads after floods in remote sensed and social media data [J]. Signal Processing: Image Communication, 2019, 74: 110-118. [5] 陈旭, 张军, 陈文伟, 等. 卷积网络深度学习算法与实例[J]. 广东工业大学学报, 2017, 34(6): 20-26. CHEN X, ZHANG J, CHEN W W, et al. Convolutional neural network algorithm and case [J]. Journal of Guangdong University of Technology, 2017, 34(6): 20-26. [6] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4): 640-651. [7] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[J]. arXiv preprint arXiv: 1511.07122, 2015. [8] ZHAO H S, SHI J P, QI X, et al. Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 2881-2890. [9] GADDE R, JAMPANI V, KIEFEL M, et al. Superpixel convolutional networks using bilateral inceptions[C]//European Conference on Computer Vision. Cham: Springer, 2016: 597-613. [10] HUANG G, LIU Z, MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 4700-4708. [11] GHIASI G, FOWLKES C. Laplacian pyramid reconstruction and refinement for semantic segmentation[C]// European Conference on Computer Vision. Cham: Springer, 2016: 519-534. [12] LIN G, MILAN A, SHEN C, et al. Refinenet: multi-path refinement networks for high-resolution semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 1925-1934. [13] PENG C, ZHANG X, YU G, et al. Large kernel matters-improve semantic segmentation by global convolutional network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 4353-4361. [14] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848. [15] SHERRAH J. Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery[J]. arXiv preprint arXiv: 1606.02585, 2016. [16] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer, 2015: 234-241. [17] YU Z, FENG C, LIU M Y, et al. Casenet: deep category-aware semantic edge detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 5964-5973. [18] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580-587. [19] HARIHARAN B, ARBELÁEZ P, GIRSHICK R, et al. Simultaneous detection and segmentation[C] //European Conference on Computer Vision. Zurich: Springer, 2014: 297-312. [20] NOH H, HONG S, HAN B. Learning deconvolution network for semantic segmentation[C] //Proceedings of the IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1520-1528. [21] ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//European Conference on Computer Vision. Zurich: Springer, 2014: 818-833. [22] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv preprint arXiv: 1706.05587, 2017. [23] ZHENG S, JAYASUMANA S, ROMERAPAREDES B, et al. Conditional random fields as recurrent neural networks[C]// Proceedings of the IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1529-1537. [24] LIN G, SHEN C, VAN DEN HENGEL A, et al. Efficient piecewise training of deep structured models for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 3194-3203. [25] JAMPANI V, KIEFEL M, GEHLER P V. Learning sparse high dimensional filters: image filtering, dense CRFs and bilateral neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 4452-4461. [26] POHLEN T, HERMANS A, MATHIAS M, et al. Full-resolution residual networks for semantic segmentation in street scenes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4151-4160. [27] PRASAD M, ZISSERMAN A, FITZGIBBON A W, et al. Learning class-specific edges for object detection and segmentation [J]. Lecture Notes in Computer Science, 2006, 4338: 94-10 5. [28] BERTASIUS G, SHI J, TORRESANI L. High-for-low and low-for-high: efficient boundary detection from deep object features and its applications to high-level vision[C]// Proceedings of the IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 504-512. [29] BERTASIUS G, SHI J, TORRESANI L. Semantic segmentation with boundary neural fields[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 3602-3610. [30] XIE S, TU Z. Holistically-nested edge detection [J]. International Journal of Computer Vision, 2015, 125(1-3): 3-18. [31] KENDALL A, GAL Y, CIPOLLA R. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7482-7491. [32] MISRA I, SHRIVASTAVA A, GUPTA A, et al. Cross-stitch networks for multi-task learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 3994-4003. [33] BADRINARAYANAN V, KENDALL A, CIPOLLA R. Segnet: a deep convolutional encoder-decoder architecture for image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. [34] CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision (ECCV). Glasgow: Springer, 2018: 801-818. [35] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv: 1409.1556, 2014. [36] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. [37] ACUNA D, KAR A, FIDLER S. Devil is in the edges: learning semantic boundaries from noisy annotations[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 11075-11083. [38] YU Z, LIU W, ZOU Y, et al. Simultaneous edge alignment and learning[C]//Proceedings of the European Conference on Computer Vision (ECCV). Glasgow: Springer, 2018: 388-404. [39] TAKIKAWA T, ACUNA D, JAMPANI V, et al. Gated-SCNN: gated shape CNNs for semantic segmentation[C]//Proceedings of the IEEE International Conference on Computer Vision. Seoul: IEEE, 2019: 5229-5238. |
[1] | Xie Yan, Liu Guang-cong. Lane Recognition and Vehicle Detection Algorithm Based on Code-model [J]. Journal of Guangdong University of Technology, 2019, 36(04): 36-41. |
[2] | He Chun, Feng Sang, Lu Xiao, Chen Xiao-long. The Application of Morphology to Edge Detection of Traffic Signs [J]. Journal of Guangdong University of Technology, 2013, 30(3): 101-104. |
[3] | LIU Li-cheng. An Improved Vehicle Image Edge Detection Based on Morphology Gradient [J]. Journal of Guangdong University of Technology, 2007, 24(2): 84-86. |
[4] | CAO Xiao-jun,PAN Bao-chang,ZHENG Sheng-lin,GAN Yan-fen . Motion Object Detection Method Based on the Characteristic Image [J]. Journal of Guangdong University of Technology, 2007, 24(2): 87-89. |
[5] | LIU Li-cheng. Vehicle Image Edge Detection Using Image Cluster Analysis [J]. Journal of Guangdong University of Technology, 2006, 23(2): 69-73. |
|