Journal of Guangdong University of Technology ›› 2023, Vol. 40 ›› Issue (04): 45-52.doi: 10.12052/gdutxb.220107
• Computer Science and Technology • Previous Articles Next Articles
Lin Zhe-huang, Li Dong
CLC Number:
[1] EVANGELIDIS G, SINGH G, HORAUD R. Skeletal quads: human action recognition using joint quadruples[C]//201422nd International Conference on Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2014: 4513-4518. [2] 周小平, 郭开仲. 基于计算机视觉的腾空飞脚错误动作识别模型[J]. 广东工业大学学报, 2012, 29(4): 14-17.ZHOU X P, GUO K Z. The model for the recognition of flying kick error action based on computer vision[J]. Journal of Guangdong University of Technology, 2012, 29(4): 14-17. [3] WANG H, SCHMID C. Action recognition with improved trajectories[C]//Proceedings of the IEEE International Conference on Computer Vision. New York: IEEE, 2013: 3551-3558. [4] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297. [5] SADEGH A M, SADAT S F, SALZMANN M, et al. Encouraging lstms to anticipate actions very early[C]//Proceedings of the IEEE International Conference on Computer Vision. New York: IEEE, 2017: 280-289. [6] JAIN A, SINGH A, KOPPULA H S, et al. Recurrent neural networks for driver activity anticipation via sensory-fusion architecture[C]//2016 IEEE International Conference on Robotics and Automation (ICRA). New York: IEEE, 2016: 3118-3125. [7] WANG H, WANG L. Beyond joints: learning representations from primitive geometries for skeleton-based action recognition and detection[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4382-4394. [8] YANG C, XU Y, SHI J, et al. Temporal pyramid network for action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2020: 591-600. [9] WANG L, TONG Z, JI B, et al. TDN: temporal difference networks for efficient action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2021: 1895-1904. [10] LI C, ZHONG Q, XIE D, et al. Skeleton-based action recognition with convolutional neural networks[C]//2017 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). New York: IEEE, 2017: 597-600. [11] WENG J, LIU M, JIANG X, et al. Deformable pose traversal convolution for 3D action and gesture recognition[C]//Proceedings of the European Conference on Computer Vision (ECCV). Cham, Switzerland: Springer, 2018: 136-152. [12] KE Q, BENNAMOUN M, AN S, et al. Learning clip representations for skeleton-based 3d action recognition[J]. IEEE Transactions on Image Processing, 2018, 27(6): 2842-2855. [13] LIU J, WANG G, DUAN L Y, et al. Skeleton-based human action recognition with global context-aware attention LSTM networks[J]. IEEE Transactions on Image Processing, 2017, 27(4): 1586-1599. [14] SI C, JING Y, WANG W, et al. Skeleton-based action recognition with spatial reasoning and temporal stack learning[C]//Proceedings of the European Conference on Computer Vision (ECCV). Cham, Switzerland: Springer, 2018: 103-118. [15] LI S, LI W, COOK C, et al. Independently recurrent neural network (indrnn): building a longer and deeper rnn[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018: 5457-5466. [16] CHEN T, ZHOU D, WANG J, et al. Learning multi-granular spatio-temporal graph network for skeleton-based action recognition[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York: Association for Computing Machinery, 2021: 4334-4342. [17] YAN S, XIONG Y, LIN D. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2018, 32(1). [18] SHI L, ZHANG Y, CHENG J, et al. Two-stream adaptive graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2019: 12026-12035. [19] ZHANG P, LAN C, ZENG W, et al. Semantics-guided neural networks for efficient skeleton-based human action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2020: 1112-1121. [20] SONG Y F, ZHANG Z, SHAN C, et al. Richly activated graph convolutional network for robust skeleton-based action recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 31(5): 1915-1925. [21] ZENG A, SUN X, YANG L, et al. Learning skeletal graph neural networks for hard 3D pose estimation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. New York: IEEE, 2021: 11436-11445. [22] LI S, YI J, FARHA Y A, et al. Pose refinement graph convolutional network for skeleton-based action recognition[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 1028-1035. [23] YANG H, GU Y, ZHU J, et al. PGCN-TCA: pseudo graph convolutional network with temporal and channel-wise attention for skeleton-based action recognition[J]. IEEE Access, 2020, 8: 10040-10047. [24] DING X, YANG K, CHEN W. A semantics-guided graph convolutional network for skeleton-based action recognition[C]//Proceedings of the 2020 the 4th International Conference on Innovation in Artificial Intelligence. New York: Association for Computing Machinery, 2020: 130-136. [25] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society, 2016: 770-778. [26] SHI L, ZHANG Y, CHENG J, et al. Skeleton-based action recognition with multi-stream adaptive graph convolutional networks[J]. IEEE Transactions on Image Processing, 2020, 29: 9532-9545. |
[1] | Huang Xiao-yong, Li Wei-tong. Fall Detection Algorithm Based on TSSI and STB-CNN [J]. Journal of Guangdong University of Technology, 2023, 40(04): 53-59. |
[2] | Liu Yang, Peng Shi-guo, Ma Hong-zhi, Liao Wei-xin. Dynamic Parameter Identification and Gait Tracking of Lower Limb Exoskeleton Robot [J]. Journal of Guangdong University of Technology, 2022, 39(06): 44-52. |
[3] | WANG Wan-Xin, JIA Li-Feng. The Method of Removing Burrs in Skeleton Extraction [J]. Journal of Guangdong University of Technology, 2014, 31(4): 90-94. |
|