Journal of Guangdong University of Technology ›› 2023, Vol. 40 ›› Issue (05): 117-122,132.doi: 10.12052/gdutxb.220089

• Comprehensive Studies • Previous Articles    

Testing and Measuring Friction Characteristics Between Soil and Concrete Surface in Guangzhou Area

Mao Ji-min, Wu Ying-yi, Yang Xue-qiang, Zhang Min, Duan Wen-jie   

  1. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2022-05-19 Published:2023-09-26

Abstract: In order to study the friction angles between different soils and concrete surface in Guangzhou area, four soil samples and three different slurry-soil mixtures from different regions were put into the modified direct shear apparatus, and direct shear tests were carried out under different normal stresses to obtain the friction angles between soils, slurry-soil mixtures and concrete surfaces. Testing results show that: (1) the friction angle between granite residual remolded dry soil and concrete block surface is 25.2°. The friction angle between granite residual undisturbed soil and concrete block surface is 24.1°. Nansha silt soil and concrete block surface friction angle is 17.2°. Fujian standard dry sand and concrete block surface friction angle is 31.7°; (2) the friction angle between soil and concrete surface depends on the mineral composition of soil, normal pressure, the interlocking between particles, water content, and the interaction between soil and concrete surface. The degree of convexity and concavity changing on concrete surface, the content and gradation of sand particles in soil, the content of clay and mica, unsaturated state of soil, determine the cohesion of concrete and soil shear surface finally; and (3) as slurry weight ratio increasing, frictional coefficient and cohesion are both decreased between slurry-soil mixture and concrete surfaces.

Key words: granite residual soil, silty soil, Fujian standard sand, slurry-soil mixture, interface friction angle, interface cohesion

CLC Number: 

  • TU473.11
[1] 广东省基础工程集团有限公司. 顶管技术规程: DBJ/T 15-106-2015[S]. 北京: 中国城市出版社, 2016.
[2] 龚慈, 魏纲, 徐日庆. 顶管施工中矩形沉井工作井允许反力的计算[J]. 岩土力学, 2005, 26(7): 1127-1131.
GONG C, WEI G, XU R Q. Calculation of allowable reaction of rectangular caisson in pipe jacking construction [J]. Rock and Soil Mechanics, 2005, 26(7): 1127-1131.
[3] 黄章君, 杨艳玲, 汤东桑, 等. 大尺寸矩形顶管始发井反力墙数值模拟与监测[J]. 隧道建设, 2020, 40(7): 972-980.
HUANG Z J, YANG Y L, TANG D S, et al. Numerical simulation and monitoring of reaction wall of launching shaft for large rectangular pipe jacking [J]. Tunnel Construction, 2020, 40(7): 972-980.
[4] 蒋燕, 葛春辉. 矩形沉井井壁受顶管后座力作用的分析[J]. 特种结构, 2001, 18(1): 1-3.
JIANG Y, GE C H. Analysis of rectangular caisson wall subjected to pipe jacking recoil [J]. Special Structures, 2001, 18(1): 1-3.
[5] 雷晗. 大直径砼顶管工程中土与结构的相互作用分析[D]. 上海: 上海交通大学, 2012.
[6] 宋伟宁, 葛春辉. 顶管工程中后座并壁荷载近似计算方法探讨[J]. 特种结构, 1995, 12(4): 31-35.
SONG W N, GE C H. Discussion on approximate calculation method of recoil and wall load in pipe jacking engineering [J]. Special Structures, 1995, 12(4): 31-35.
[7] 吴能森, 赵尘, 侯伟生. 花岗岩残积土的成因、分布及工程特性研究[J]. 平顶山工学院学报, 2004, 13(4): 1-4.
WU N S, ZHAO C, HOU W S. Study on origin, distribution and engineering characteristics of granite residual soil [J]. Journal of Pingdingshan Institute of Technology, 2004, 13(4): 1-4.
[8] 李焯芬, 陈虹. 香港滑坡泥石流成因及治理[J]. 地理学报, 1997, 52(S1): 114-121.
LI C F, CHEN H. The causes and control of landslides and debris flow in Hong Kong [J]. Acta Geographica Sinica, 1997, 52(S1): 114-121.
[9] 黄义雄. 平潭沙石资源的开发利用问题探讨[J]. 福建地理, 1994, 9(2): 15-21.
HUANG Y X. Discussion on exploitation and utilization of Pingtan sandstone resources [J]. Fujian Geography, 1994, 9(2): 15-21.
[10] 郭聚坤, 雷胜友, 王瑞, 等. 结构物-标准砂界面剪切机理试验研究[J]. 地下空间与工程学报, 2020, 16(3): 722-733.
GUO J K, LEI S Y, WANG R, et al. Experimental study on shear mechanism of structural-standard sand interface [J]. Chinese Journal of Underground Space and Engineering, 2020, 16(3): 722-733.
[11] 王瑞, 郭聚坤, 卞贵建, 等. 结构物−标准砂界面剪切机理及数值模拟分析[J]. 中外公路, 2020, 40(1): 212-217.
WANG R, GUO J K, BIAN G J, et al. Shear mechanism and numerical simulation analysis of structure-standard sand interface [J]. China and Foreign Highway, 20, 40(1): 212-217.
[12] 程全新. 砂土层混凝土顶管施工结构与土相互作用分析[D]. 沈阳: 东北大学, 2015.
[13] 李天亮, 赵文, 韩健勇, 等. 顶管泥浆套与混凝土界面剪切力学特性试验研究[J]. 应用基础与工程科学学报, 2022, 30(2): 396-406.
LI T L, ZHAO W, HAN J Y, et al. Experimental study on shear mechanical properties of pipe jacking mud sleeve and concrete interface [J]. Chinese Journal of Basic Science and Engineering, 2022, 30(2): 396-406.
[14] 李天降, 陈雪锋, 陈伟超, 等. 砂土与混凝土顶管界面摩擦特性试验研究[J]. 地质科技通报, 2021, 40(6): 178-184.
LI T J, CHEN X F, CHEN W C, et al. Experimental study on friction characteristics of pipe jacking interface between sand and concrete [J]. Bulletin of Geological Science and Technology, 2021, 40(6): 178-184.
[15] 高彦斌, 王江锋, 叶观宝, 等. 重塑上海淤泥质粘土直剪试验[J]. 煤田地质与勘探, 2010, 38(1): 37-40.
GAO Y B, WANG J F, YE G B, et al. Direct shear test of remolded Shanghai silty clay [J]. Coal Geology and Exploration, 2010, 38(1): 37-40.
[16] 李广信. 高等土力学: 第2版 [M]. 北京: 清华大学出版社, 2016.
[17] 王坤. 原状花岗岩残积土非饱和力学特性及其边坡稳定分析[D]. 广州: 广东工业大学, 2021.
[18] 吴颖怡. 电力浅埋顶管施工引起的地表变形研究[D]. 广州: 广东工业大学, 2022.
[1] Feng De-luan, Xiao Xue-li, Liang Shi-hua, Zhu Chong. Disintegration Resistance and Scouring Resistance of Microbial Solidified Granite Residual Soil [J]. Journal of Guangdong University of Technology, 2022, 39(02): 99-104.
[2] LIANG Shi-Hua, ZHOU Shi-Zong, ZHANG Lang, WANG Meng. Statistical Analysis of Physical and Mechanical Indexes of Granite Residual Soil in Eastern Guangzhou [J]. Journal of Guangdong University of Technology, 2015, 32(1): 29-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!