Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (01): 1-10.doi: 10.12052/gdutxb.230168
• Feature Article • Next Articles
Yang Rui-feng1, Xu Jun2
CLC Number:
[1] Intergovernmental Panel on Climate Change. An IPCC special report: global warming of 1.5 ℃[EB/OL]. (2018-10-08) [2023-07-29]. https://www.ipcc.ch/sr15/. [2] MANABE S, WETHERALD R T. Thermal equilibrium of the atmosphere with a given distribution of relative humidity [J]. Journal of the Atmospheric Sciences, 1967, 24(3): 241-259. [3] HASSELMANN K. Stochastic climate models: part I theory [J]. Tellus, 1976, 28(6): 473-485. [4] NORDHAUS WD. Strategies for the control of carbon dioxide [J]. Cowles Foundation Discussion Papers, 1977, 4(12): 910-912. [5] IPCC. Climate change 2021: the physical science basis. synthesis report of the sixth assessment report[R/OL]. (2023-03-13) [2023-07-29]. https://www.ipcc.ch/ar6-syr/. [6] BLOHM M. An enabling framework to support the sustainable energy transition at the national level [J]. Sustainability, 2021, 13(7): 3834. [7] OSTP, DOE, Department of State. National innovation pathway report[R/OL]. (2023-04-01) [2023-07-29]. https://www.whitehouse.gov/wp-content/uploads/2023/04/US-National-Innovation-Pathway.pdf. [8] EU Commission. The european green deal: striving to be the first climate-neutral continent[EB/OL]. (2019-12-11) [2023-07-29]. https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en. [9] Japan Ministry of Economy, Trade and Industry. Green growth strategy through achieving carbon neutrality in 2050 [R/OL]. (2022-10-17) [2023-07-29]. https://www.meti.go.jp/english/policy/energy_environment/global_warming/ggs2050/index.html. [10] 国务院. 中共中央国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见[EB/OL]. (2021-10-24) [2023-07-31]. https://www.gov.cn/zhengce/2021-10/24/content_5644613.htm. [11] 中华人民共和国科技部. 科技支撑碳达峰碳中和实施方案(2022—2030年) [EB/OL]. (2022-08-18) [2023-07-31]. https://www.gov.cn/zhengce/zhengceku/2022-08/18/5705865/files/94318119b8464e2583a3d4284df9c855.pdf. [12] United Nations Framework Convention on Climate Change. Paris agreement[EB/OL]. (2015-12-12) [2023-07-29]. https://unfccc.int/sites/default/files/english_paris_agreement.pdf. [13] IPCC. United nations framework convention on climate change[EB/OL]. (1992-05-09) [2023-07-29]. https://www.cma.gov.cn/en/Special/2012Special/e20121121/e2012112107/201211/P020131108596802542337.pdf. [14] 徐南平, 赵静, 刘公平. “双碳”目标下膜技术发展的思考[J]. 化工进展, 2022, 41(3): 1091-1096. XU N P, ZHAO J, LIU G P. Thinking of membrane technology development towards “carbon emission peak” and “carbon neutrality” targets [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1091-1096. [15] 徐俊. 科技支撑碳中和目标实现的路径选择及政策研究[J]. China Economist, 2022, 17(2): 48-68. XU J. Path selection and policy study for the carbon neutrality required technology [J]. China Economist, 2022, 17(2): 48-68. [16] 丁仲礼. 碳中和对中国的挑战和机遇[J]. 中国新闻发布(实务版), 2022(1): 16-23. [17] WANG F, HARINDINTWALI J D, YUAN Z, et al. Technologies and perspectives for achieving carbon neutrality [J]. The Innovation, 2021, 2(4): 100180. [18] 黄晶, 孙新章, 张贤. 中国碳中和技术体系的构建与展望[J]. 中国人口·资源与环境, 2021, 31(9): 24-28. HUANG J, SUN X Z, ZHANG X. Construction and prospect of the typological framework of technologies for carbon neutrality in China [J]. China Population, Resources and Environment, 2021, 31(9): 24-28. [19] GUO S, LIU Y, ZHAO W C, et al. Technological development pathway for carbon neutrality in China [J]. Science Bulletin, 2023, 68(2): 117-120. [20] 王超, 孙福全, 许晔. 世界主要经济体碳中和战略剖析及启示[J]. 世界科技研究与发展, 2023, 45(2): 129-138. WANG C, SUN F Q, XU Y. Analysis of carbon neutral strategy of the world’s major economies and its enlightenment [J]. World Sci-Tech R & D, 2023, 45(2): 129-138. [21] 樊星, 李路, 秦圆圆, 等. 主要发达经济体从碳达峰到碳中和的路径及启示[J]. 气候变化研究进展, 2023, 19(1): 102-115. FAN X, LI L, QIN Y Y, et al. The pathway from carbon peak to carbon neutrality in major developed economies and its insights [J]. Climate Change Research, 2023, 19(1): 102-115. [22] 王灿, 丛建辉, 王克, 等. 中国应对气候变化技术清单研究[J]. 中国人口·资源与环境, 2021, 31(3): 1-12. WANG C, CONG J H, WANG K, et al. Research on China’s technology lists for addressing climate change [J]. China Population, Resources and Environment, 2021, 31(3): 1-12. [23] 武海云, 武艺, 董晓燕. 我国实现碳中和的技术路径分析[J]. 中国工业和信息化, 2022(7): 66-70. [24] 张希良, 黄晓丹, 张达, 等. 碳中和目标下的能源经济转型路径与政策研究[J]. 管理世界, 2022, 38(1): 35-66. [25] 申能集团: 为煤电机组“三改联动”提供“上海方案”[J]. 上海国资, 2023(6) : 54-58. [26] 仲蕊. 我国清洁高效煤电技术稳步提高[N]. 中国能源报, 2023-04-03(013) . [27] 王建峰, 刘沛奇, 杨用龙, 等. 300 MW热电机组热电解耦灵活性改造[J]. 浙江电力, 2022, 41(2): 98-102. WANG J F, LIU P Q, YANG Y L, et al. Flexibility retrofit of heat and power decoupling of a 300 MW thermal power unit [J]. Zhejiang Electric Power, 2022, 41(2): 98-102. [28] 李峻, 祝培旺, 王辉, 等. 基于高温熔盐储热的火电机组灵活性改造技术及其应用前景分析[J]. 南方能源建设, 2021, 8(3): 63-70. LI J, ZHU P W, WANG H, et al. Flexible modification technology and application prospect of thermal power unit based on high temperature molten salt heat storage [J]. Southern Energy Construction, 2021, 8(3): 63-70. [29] 中国可再生能源学会光伏委员会. 2022中国光伏技术发展报告(简版) [R]. 北京: 中国可再生能源学会光伏委员会, 2022. [30] 天风证券. HJT行业研究报告[EB/OL]. (2023-03-08) [2023-08-02]. https://baijiahao.baidu.com/s?id=1759765972822187663. [31] 科创板日报. 44.72%!钙钛矿电池效率再破纪录[EB/OL]. (2023-02-15) [2023-08-02]. https://baijiahao.baidu.com/s?id=1757871179276363591. [32] 中国可再生能源学会光伏委员会. 2023中国光伏技术发展报告(简版) [R]. 北京: 中国可再生能源学会光伏委员会, 2023. [33] 胡丹梅, 曾理, 纪胜强. 我国海上风电机组的现状与发展趋势[J]. 上海电力大学学报, 2022, 38(5): 471-477. HU D M, ZENG L, JI S Q. Current situation and develop -ment trend of offhore wind turbines in China [J]. Journal of Shanghai University of Electric Power, 2022, 38(5): 471-477. [34] 张琛, 邓伟. 中国风电产业发展现状及趋势研究[J]. 机电产品开发与创新, 2023, 36(3): 206-208. ZHANG C, DENG W. Research on the development status and trend of China’s wind power industry [J]. Development & Innovation of Machinery & Electrical Products, 2023, 36(3): 206-208. [35] 曾哲峰. 核电产业的发展现状与定位策略分析[J]. 集成电路应用, 2022, 39(6): 240-241. ZENG Z F. Analysis on development status and positioning strategy of nuclear power industry [J]. Application of IC, 2022, 39(6): 240-241. [36] IT之家. 世界首座第四代技术钍基熔盐堆将在甘肃测试: 耗水少, 更安全[EB/OL]. (2021-09-14) [2023-8-2]. https://www.sohu.com/a/489854022_114760. [37] 王康, 清华四川能源互联网研究院. 中国智能电网发展成就与趋势[R]. 北京: 中德能源与能效合作伙伴. 2022. [38] 陈海生, 李泓, 徐玉杰, 等. 2022年中国储能技术研究进展[J]. 储能科学与技术, 2023, 12(5): 1516-1552. CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2022 [J]. Energy Storage Science and Technology, 2023, 12(5): 1516-1552. [39] 李杨楠, 张国昀, 程一步. 不同储能技术的经济性及应用前景分析[J]. 石油石化绿色低碳, 2023, 8(3): 1-8. LI Y N, ZHANG G Y, CHENG Y B. Economic analysis and applications prospect of energy storage technologies [J]. Green Petroleum & Petrochemicals, 2023, 8(3): 1-8. [40] XIE H, ZHAO Z, LIU T, et al. A membrane-based seawater electrolyser for hydrogen generation [J]. Nature, 2022, 612(7941): 673-678. [41] 陈霁, 司云波. 全球氢能技术创新趋势[J]. 世界石油工业, 2023, 30(1): 82. [42] 陈逸文, 赵晋斌, 李军舟, 等. 电力低碳转型背景下氢储能的挑战与展望[J]. 发电技术, 2023, 44(3): 296-304. CHEN Y W, ZHAO J B, LI J Z, et al. Challenges and prospects of hydrogen energy storage under the background of low-carbon transformation of power industry [J]. Power Generation Technology, 2023, 44(3): 296-304. [43] 甘凤丽, 江霞, 常玉龙, 等. 石化行业碳中和技术路径探索[J]. 化工进展, 2022, 41(3): 1364-1375. GAN F L, JIANG X, CHANG Y L, et al. Exploration of carbon neutral technology path in petrochemical industry [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1364-1375. [44] ZHENG J W, HUANG L L, CUI C H, et al. Ambient-pressure synthesis of ethylene glycol catalyzed by C60-buffered Cu/SiO2 [J]. Science, 2022, 376(6590): 288-292. [45] 相宏伟, 杨勇, 李永旺. 碳中和目标下的煤化工变革与发展[J]. 化工进展, 2022, 41(3): 1399-1408. XIANG H W, YANG Y, LI Y W, et al. Transformation and development of coal chemical industry under the goal of carbon neutralization [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1399-1408. [46] 张琦, 沈佳林, 籍杨梅. 典型钢铁制造流程碳排放及碳中和实施路径[J]. 钢铁, 2023, 58(2): 173-187. ZHANG Q, SHEN J L, JI Y M. Analysis of carbon emissions in typical iron and steel making process and implementation path research of carbon neutrality [J]. Iron and Steel, 2023, 58(2): 173-187. [47] 夏凌风, 郭珍妮, 邱林, 等. 水泥行业碳减排途径及贡献度探讨[J]. 中国水泥, 2022(11): 14-19. [48] 郑诗礼, 叶树峰, 王倩等. 有色金属工业低碳技术分析与思考[J]. 过程工程学报, 2022, 22(10): 1333-1348. ZHENG S L, YE S F, WANG Q, et al. Analysis and thinking of low-carbon technology in non-ferrous metal industry [J]. The Chinese Journal of Process Engineering, 2022, 22(10): 1333-1348. [49] 陆总兵. 建筑领域碳中和绿色技术创新战略研究[C]//第二十届中国科学家论坛论文集. 南通: 南通新华建筑集团有限公司, 2022: 6. [50] 邹芳睿, 朱能, 郭而郛等. 基于“双碳”背景的生态城市近零能耗建筑技术实践——以中新天津生态城为例[J]. 绿色建筑, 2023, 15(4): 13-18. [51] 刘慧慧, 陈启新, 张高锋, 等. 碳中和视角下绿色建筑关键性技术应用与研究[J]. 绿色建筑, 2022, 14(2): 28-31. [52] 袁晓华, 华小婧. 浅析电动汽车助力绿色交通碳中和目标实现[J]. 世界环境, 2021(3): 56-59. [53] 伍赛特. 车用驱动电机技术特点研究及发展趋势展望[J]. 移动电源与车辆, 2023, 54(1): 68-74. WU S T. Technical characteristics research and development trend prospect of automobile driving motor [J]. Movable Power Station & Vehicle, 2023, 54(1): 68-74. [54] 华夏时报. 上海开展加氢站现场制氢试点, 氢燃料电池车或迎风口[EB/OL]. (2023-06-15) [2023-08-05]. https://baijiahao.baidu.com/s?id=1768747468107896357 [55] 冯晓云, 黄德青, 王青元, 等. 轨道交通列车综合节能研究综述[J]. 铁道学报, 2023, 45(2): 22-34. FENG X Y, HUANG D Q, WANG Q Y, et al. Overview on comprehensive energy saving schemes for rail transit train operation system [J]. Journal of the China Railway Society, 2023, 45(2): 22-34. [56] 陈弓, 朱宇, 韩冰. 绿色航运能源技术现状及发展趋势分析[J]. 交通信息与安全, 2023, 41(2): 168-178. CHEN G, ZHU Y, HAN B. A study on the status quo and trend of green energy technology for shipping industry [J]. Journal of Transport Information and Safety, 2023, 41(2): 168-178. [57] 智慧交通成交通领域减碳关键 智慧交通发展前景预测[EB/OL]. (2022-04-19) [2023-08-12]. https://baijiahao.baidu.com/s?id=1730466179287557199&wfr=spider&for=pc. [58] 于贵瑞, 朱剑兴, 徐丽, 等. 中国生态系统碳汇功能提升的技术途径: 基于自然解决方案[J]. 中国科学院院刊, 2022, 37(4): 490-501. YU G R, ZHU J X, XU L, et al. Technological approaches to enhance ecosystem carbon sink in China: nature-based solutions [J]. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 490-501. [59] 傅伯杰, 吕楠, 吕一河. 加强生态系统管理 助力碳中和目标实现[J]. 中国科学院院刊, 2022, 37(11): 1529-1533. FU B J, LYU N, LYU Y H. Strengthening ecosystem management is helpful for achieving the carbon neutrality goal [J]. Bulletin of Chinese Academy of Sciences, 2022, 37(11): 1529-1533. [60] 张贤, 杨晓亮, 鲁玺, 等. 中国二氧化碳捕集利用与封存 (CCUS) 年度报告 (2023) [R]. 北京: 清华大学, 全球碳捕集与封存研究院, 2023. [61] 朱建华, 田宇, 李奇, 等. 中国森林生态系统碳汇现状与潜力[J]. 生态学报, 2023, 43(9): 3442-3457. ZHU J H, TIAN Y, LI Q, et al. The current and potential carbon sink in forest ecosystem in China [J]. Acta Ecologica Sinica, 2023, 43(9): 3442-3457. [62] 李紫晶, 高翠萍, 王忠武, 等. 中国草地固碳减排研究现状及其建议[J]. 草业学报, 2023, 32(2): 191-200. LI Z J, GAO C P, WANG Z W, et al. Research status and suggestions for grassland carbon sequestration and emission reduction in China [J]. Acta Prataculturae Sinica, 2023, 32(2): 191-200. [63] FAKHRAEE M, PLANAVSKY N J, REINHARD C T. Ocean alkalinity enhancement through restoration of blue carbon ecosystems [J]. Nature Sustainability, 2023, 6: 1087-1094. [64] 蔡博峰, 李琦, 张贤, 等. 中国二氧化碳捕集利用与封存(CCUS) 年度报告(2021) : 中国 CCUS 路径研究[R]. 北京: 生态环境部环境规划院, 中国科学院武汉岩土力学研究所, 2021. [65] 李玲. 我国CCUS项目建设取得新进展[N]. 中国能源报, 2023-05-29(004) . [66] 刘江枫, 张奇, 吕伟峰, 等. 碳捕集利用与封存一体化技术研究进展与产业发展策略[J]. 北京理工大学学报(社会科学版) , 2023, 25(5): 40-53. LIU J F, ZHANG Q, LYU W F, et al. Study on the research progress and industry development strategy of integrated carbon capture, utilization and storage technology [J]. Journal of Beijing Institute of Technology (Social Sciences Edition) , 2023, 25(5): 40-53. [67] 王光大. 钢铁工业碳捕集、利用与封存(CCUS) 技术发展现状及未来展望[J]. 品牌与标准化, 2023(S1): 147-149. WANG G D. Current status and future prospects of carbon capture, utilization, and storage (CCUS) technology in the steel industry [J]. Brand & Standardization, 2023(S1): 147-149. [68] 顾永正, 王天堃, 黄艳, 等. 燃煤电厂二氧化碳捕集利用与封存技术及工程应用[J]. 洁净煤技术, 2023, 29(4): 98-108. GU Y Z, WANG T K, HUANG Y, et al. Carbon dioxide capture, utilization and storage technology and engineering application for coal-fired power plants [J]. Clean Coal Technology, 2023, 29(4): 98-108. [69] 于航, 刘强, 李彦尊, 等. 大规模海上CCS/CCUS集群项目研究与思考[J]. 石油科技论坛, 2023, 42(2): 90-95. YU H, LIU Q, LI Y Z, et al. Research and thinking of large-scale offshore CCS/CCUS cluster projects [J]. Petroleum Science and Technology Forum, 2023, 42(2): 90-95. [70] 杨斌彬, 何丽燕, 梁家榞, 等. 非二氧化碳温室气体管控政策与减排技术研究综述[J]. 广东化工, 2023, 50(3): 116-119. YANG B B, HE L Y, LIANG J Y, et al. Non-CO2 greenhouse gas control policies and emission reduction technologies: a review [J]. Guangdong Chemical Industry, 2023, 50(3): 116-119. [71] 胡敏, 陈美安, 奚溪. 中国非二氧化碳温室气体减排综述报告[R]. 北京: 绿色创新发展中心. 2023. [72] 陈美安, 胡敏, 莫争春. 中国农业非二氧化碳温室气体减排进展与展望[R]. 北京: 绿色创新发展中心. 2023. [73] 新京报. 新一轮产业竞争开启, “双碳行动”或影响我国未来40年. [EB/OL]. (2022-08-03) [2023-08-12]. https://baijiahao.baidu.com/s?id=1740107753334553317 [74] 国家能源局. 国家能源局发布2022年全国电力工业统计数据[EB/OL]. (2023-01-18) [2023-08-12]. http://www.nea.gov.cn/2023-01/18/c_1310691509.htm [75] 贾国伟, 杨念, 吴轩浩. 我国非二氧化碳温室气体管控面临的形势及建议[J]. 环境影响评价, 2023, 45(3): 1-7. JIA G W, YANG N, WU X H. The situation and suggestions for the control of non-carbon dioxide greenhouse gas emissions in China [J]. Environmental Impact Assessment, 2023, 45(3): 1-7. [76] U. S. Department of Energy. Energy storage grand challenge roadmap. (2020-12-21) [2022-08-12]. https://www.energy.gov/sites/default/files/2020/12/f81/Energy%20Storage%20Grand%20Challenge%20Roadmap.pdf. [77] 佛山广工大研究院. 行业大咖齐聚, 支招佛山“零碳无废城市”建设[EB/OL]. (2022-04-04) [2023-08-12]. https://baijiahao.baidu.com/s?id=1762231769200308214. |
[1] | Ma Ming-guo, Yuan Qi. Research Progress of Multifunctional Lignin-based Materials [J]. Journal of Guangdong University of Technology, 2022, 39(01): 14-20,62. |
|