Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (06): 108-114.doi: 10.12052/gdutxb.230173

• Information and Communication Engineering • Previous Articles    

A Grid-Continuity-Constraint Method for Extracting Single-Photon Lidar Point Cloud

Li Xin-yu1, Yu Jun-peng1, Wu Wei-dong2   

  1. 1. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China;
    2. Guangdong Institute of Land Resources Surveying and Mapping, Guangzhou 510000, China
  • Received:2023-11-03 Published:2024-09-27

Abstract: The existing single-photon LiDAR, such as ICESat-2/ATLAS, are with high observation sensitivity and significant background noise, which usually require effective filtering methods for removing noise. This paper proposes an improved adaptive photon point cloud signal extraction method based on the principle of point cloud density denoising. The proposed method first adaptively determines grid width and height according to the point cloud distribution characteristics to partition point cloud data into grids. Then, it conducts grid continuity tests as units for point cloud filtering. Finally, it employs K-means clustering and cloth simulation filter algorithms to accurately extract reliable vertical control points. Experimental results on ATL03 photon point clouds show that the proposed method achieves promising effectiveness for point cloud data with different terrain variations by achieving approximately 99.0%, 99.9%, and 99.5% in terms of signal point recall rate (Recall) , precision rate (Precision) , and F-measure, respectively. From the registration experimental results with reference point clouds, the elevation errors of photon elevation points are 0.960 m, 0.957 m, and 0.872 m, respectively, outperforming the official ATL08 control group provided by the authorities.

Key words: single-photon lidar, ICESat-2, point density, K-means clustering, CSF (Cloth Simulaton Filter)

CLC Number: 

  • TP79
[1] 朱笑笑, 王成, 习晓环, 等. ICESat-2星载光子计数激光雷达数据处理与应用研究进展[J]. 红外与激光工程, 2020, 49(11): 76-85.
ZHU X X, WANG C, XI X H, et al. Research progress of ICESat-2/ATLAS data processing and applications [J]. Infrared and Laser Engineering, 2020, 49(11): 76-85.
[2] MONTESANO P M, ROSETTE J, SUN G, et al. The uncertainty of biomass estimates from modeled ICESat-2 returns across a boreal forest gradient [J]. Remote Sensing of Environment, 2015, 158: 95-109.
[3] 黄佳鹏, 邢艳秋, 秦磊, 等. ICESat-2/ATLAS数据反演林下地形精度验证[J]. 红外与激光工程, 2020, 49(11): 122-131.
HUANG J P, XING Y Q, QIN L, et al. Accuracy verification of terrain under forest estimated from ICESat-2/ATLAS data [J]. Infrared and Laser Engineering, 2020, 49(11): 122-131.
[4] 罗成高, 刘康, 王宏强, 等. 太赫兹单光子雷达探测技术[J]. 中国科学:物理学 力学 天文学, 2021, 51(5): 7-23.
LUO C G, LIU K, WANG H Q, et al. Terahertz single-photon radar detection technology [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2021, 51(5): 7-23.
[5] 王振华, 陈诗贤, 孔伟, 等. 光子计数激光雷达中光子点云滤波方法的比较与分析[J]. 激光与光电子学进展, 2023, 60(6): 0628001.
WANG Z H, CHEN S X, KONG W, et al. Comparison and analysis of denoising for photon-counting lidar data [J]. Laser & Optoelectronics Progress, 2023, 60(6): 0628001.
[6] HERZFELD U C, MCDONALD B W, WALLIN B F, et al. Algorithm for detection of ground and canopy cover in micropulse photon-counting lidar altimeter data in preparation for the ICESat-2 mission [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(4): 2109-2125.
[7] MAGRUDER L A, WHARTON III M E, STOUT K D, et al. Noise filtering techniques for photon-counting ladar data[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2022, 8379(2): 237-245.
[8] BRUNT K M, NEUMANN T A, WALSH K M, et al. Determination of local slope on the greenland ice sheet using a multibeam photon-counting lidar in preparation for the ICESat-2 mission [J]. IEEE Geoscience and Remote Sensing Letters, 2013, 11(5): 935-939.
[9] BRUNT K M, NEUMANN T A, AMUNDSON J M, et al. MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development [J]. The Cryosphere, 2016, 10(4): 1707-1719.
[10] 夏少波, 王成, 习晓环, 等. ICESat-2机载试验点云滤波及植被高度反演[J]. 遥感学报, 2014, 18(6): 1199-1207.
XIA S B, WANG C, XI X H, et al. Point cloud filtering and tree height estimation using airborne experiment data of ICESat-2 [J]. Journal of Remote Sensing, 2014, 18(6): 1199-1207.
[11] HERZFELD U C, TRANTOW T M, HARDING D, et al. Surface-height determination of crevassed glaciers—Mathematical principles of an autoadaptive density-dimension algorithm and validation using ICESat-2 simulator (SIMPL) data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(4): 1874-1896.
[12] 谢欢, 黄佩琪, 徐琪, 等. ICESat-2数据背景光子特性及滤波方法研究[J]. 光学精密工程, 2023, 31(5): 631-643.
XIE H, HUANG P Q, XU Q, et al. Research on background photon characteristics and filtering methods for ICESat-2 data [J]. Optics and Precision Engineering, 2023, 31(5): 631-643.
[13] WANG X, PAN Z, GLENNIE C. A novel noise filtering model for photon-counting laser altimeter data [J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(7): 947-951.
[14] ZHANG J, KEREKES J, CSATHO B, et al. A clustering approach for detection of ground in micropulse photon-counting LiDAR altimeter data[C] //2014 IEEE Geoscience and Remote Sensing Symposium. Quebec: IEEE, 2014: 177-180.
[15] 谢锋, 杨贵, 舒嵘, 等. 方向自适应的光子计数激光雷达滤波方法[J]. 红外与毫米波学报, 2017, 36(1): 107-113.
XIE F, YANG G, SHU R, et al. An adaptive directional filter for photon counting Lidar point cloud data [J]. Journal of Infrared and Millimeter Waves, 2017, 36(1): 107-113.
[16] ZHU X, NIE S, WANG C, et al. A ground elevation and vegetation height retrieval algorithm using micro-pulse photon-counting lidar data [J]. Remote Sensing, 2018, 10(12): 1962.
[17] ZHU X, NIE S, WANG C, et al. A noise removal algorithm based on OPTICS for photon-counting LiDAR data [J]. IEEE Geoscience and Remote Sensing Letters, 2020, 18(8): 1471-1475.
[18] ZHANG G, XU Q, XING S, et al. A noise-removal algorithm without input parameters based on quadtree isolation for photon-counting LiDAR [J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1-5.
[19] 张冬梅, 李敏, 徐大川, 等. K-均值问题的理论与算法综述[J]. 中国科学:数学, 2020, 50(9): 1387-1404.
ZHANG D M, LI M, XU D C, et al. A survey on theory and algorithms for k-means problems [J]. Scientia Sinica Mathematica, 2020, 50(9): 1387-1404.
[20] HUANG J P, XING Y Q, SHUAI Y M, et al. A novel noise filtering evaluation criterion of ICESat-2 signal photon data in forest environments [J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.
[21] 王密, 韦钰, 杨博, 等. ICESat-2/ATLAS 全球高程控制点提取与分析[J]. 武汉大学学报 (信息科学版) , 2021, 46(2): 184-192.
WANG M, WEI Y, YANG B, et al. Extraction and analysis of global elevation control points from ICESat-2/ATLAS data [J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 184-192.
[22] 戴泽源, 张立华, 张林, 等. 适用于海岛的ICESat-2高程控制点提取方法[J]. 地球信息科学学报, 2023, 25(8): 1559-1569.
DAI Z Y, ZHANG L H, ZHANG L, et al. A method of island elevation control point extraction utilizing ICESAT-2 data [J]. Journal of Geo-Information Science, 2023, 25(8): 1559-1569.
[23] ZHANG W, QI J, WAN P, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation [J]. Remote Sensing, 2016, 8(6): 501.
[24] KUI M Y, XU Y N, WANG J L, et al. Research on the adaptability of typical denoising algorithms based on ICESat-2 data [J]. Remote Sensing, 2023, 15(15): 3884.
[25] 侯彬, 金尚忠, 王赟, 等. 点云配准方法在粗配准中的比较[J]. 激光与光电子学进展, 2020, 57(8): 081502.
HOU B, JIN S Z, WANG Y. Comparison of point cloud registration methods in coarse registration [J]. Laser & Optoelectronics Progress, 2020, 57(8): 081502.
[1] Fan Meng-ting, Liu Hong-wei, Gao Hong-ming, He Rui-chao. A Research on Competitive Product Market Structure of E-commerce Platform [J]. Journal of Guangdong University of Technology, 2019, 36(06): 32-37.doi: 10.12052/gdutxb.230173
[2] TENG Shao-Hua, WU Hao, LI Ri-Gui, ZHANG Wei, LIU Dong-Ning, LIANG Lu. The Application of the Adjustable Multitimes Clustering Algorithm in Telecom Data [J]. Journal of Guangdong University of Technology, 2014, 31(3): 1-7.doi: 10.12052/gdutxb.230173
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!