广东工业大学学报 ›› 2017, Vol. 34 ›› Issue (06): 32-36.doi: 10.12052/gdutxb.170050

• 综合研究 • 上一篇    下一篇

基于BA的改进视觉/惯性融合定位算法

马晓东, 曾碧, 叶林锋   

  1. 广东工业大学 计算机学院, 广东 广州 510006
  • 收稿日期:2017-03-09 出版日期:2017-11-09 发布日期:2017-11-22
  • 作者简介:马晓东(1991-),男,硕士研究生,主要研究方向为计算机视觉、智能机器人.
  • 基金资助:
    广东省产学研专项(2014B090904080);广州市重点科技项目(201604020016);东莞产学研合作成果转化项目(2015509109107)

An Improved Visual Odometry/SINS Integrated Localization Algorithm Based on BA

Ma Xiao-dong, Zeng Bi, Ye Lin-feng   

  1. School of Computer Science, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2017-03-09 Online:2017-11-09 Published:2017-11-22

摘要: 机器人的自主定位是实现导航及智能化的关键. 针对飞行机器人在室内环境中的定位问题,提出一种基于BA的改进视觉/惯性融合定位算法. 该方法首先采用直接法计算获得视觉信息,并结合从惯性单元获得的角速度和加速度信息,用扩展卡尔曼滤波方法进行迭代,提高视觉里程计的鲁棒性; 其次用反向深度法,提高特征点深度信息的估计精度; 最后,通过采用光束平差法(bundle adjustment)进行局部优化. 实验结果表明,本文方法有效提高了机器人定位的精度.

关键词: 惯性单元, 直接法, 视觉里程计, 光束平差

Abstract: The robot's self-localization is the key to realize navigation and intelligent. To deal with the accuracy of location problem of the flying robot in indoor environment, an improved visual odometry/SINS integrated localization algorithm based on BA is proposed. First, the proposed method combines the calculation of visual information by direct method with the angular velocity and acceleration information of inertial unit, and iterate using extended Kalman filter method, which enhances the robustness of the visual odometry. The estimation preciseness of feature points' depth information is improved with inverse depth method. Then bundle adjustment is used for local optimization. The experiment results show that the proposed algorithm has effectively improved the preciseness of robot-pose estimation.

Key words: inertial measuring unit (IMU), direct methods, visual odometry, bundle adjustment

中图分类号: 

  • TP24
[1] 徐伟锋, 蔡述庭, 熊晓明. 基于深度特征的单目视觉惯导里程计[J]. 广东工业大学学报, 2023, 40(01): 56-60,76.
[2] 叶培楚, 李东, 章云. 基于双目强约束的直接稀疏视觉里程计[J]. 广东工业大学学报, 2021, 38(04): 65-70.
[3] 汝少楠, 何元烈, 叶星余. 基于稀疏直接法闭环检测定位的视觉里程计[J]. 广东工业大学学报, 2021, 38(03): 48-54.
[4] 池鹏可, 苏成悦. 移动机器人中单目视觉里程计的研究[J]. 广东工业大学学报, 2017, 34(05): 40-44.
[5] 何瑞文; 陈少华; . 电力系统在线暂态稳定分析方法评述[J]. 广东工业大学学报, 2004, 21(1): 26-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!