广东工业大学学报 ›› 2018, Vol. 35 ›› Issue (04): 119-126.doi: 10.12052/gdutxb.170161

• 综合研究 • 上一篇    

基于水膜厚度假设分析磨细高炉矿渣对水泥浆性能影响

温梦丹, 陈嘉健, 高御审, 马岸民   

  1. 佛山科学技术学院 土木工程系, 广东 佛山 528000
  • 收稿日期:2017-12-05 出版日期:2018-07-09 发布日期:2018-06-06
  • 通信作者: 陈嘉健(1985-),男,副教授,主要研究方向为新型建筑材料与结构,E-mail:chenjiajian@fosu.edu.cn E-mail:chenjiajian@fosu.edu.cn
  • 作者简介:温梦丹(1993-),女,硕士研究生,主要研究方向为新型建筑材料与结构.
  • 基金资助:
    佛山市科技计划项目(2016AB000031);佛山科学技术学院2018年度学生学术基金资助项目(重点项目)

Effect of Ground Granulated Blast Furnace Slag on Properties Based on Analysis of Water Film Thickness Hypothesis

Wen Meng-dan, Chen Jia-jian, Gao Yu-shen, Ma An-min   

  1. Department of Civil Engineering, Foshan University, Foshan 528000, China
  • Received:2017-12-05 Online:2018-07-09 Published:2018-06-06
  • Supported by:
     

摘要: 为探索磨细高炉矿渣对水泥浆性能及其水膜厚度的影响,研究测量了30组不同水胶比、不同磨细高炉矿渣掺量的水泥–;矿渣复合浆体的流动性能、黏聚性和抗压强度.为探索浆体的流变性能控制机理,进一步测量了5组不同磨细高炉矿渣掺量水泥–;矿渣复合浆体的填充密度,并基于填充密度测量结果计算出各浆体试样配比的水膜厚度,探索水膜厚度对水泥–;矿渣复合浆体流变性能的影响.实验结果表明,适量磨细高炉矿渣的掺入能提高浆体的流动性能和抗压强度,黏聚性些许减弱,最优配比磨细高炉矿渣掺量为5%,此时水泥–;矿渣复合浆体综合性能最好.磨细高炉矿渣掺入能提高胶凝材料的填充密度,水膜厚度为流动性主要控制因素,水泥浆的流动性能随水膜厚度增大而增大.

关键词: 流动性能, 磨细高炉矿渣, 强度, 水膜厚度

Abstract: To study the effect of ground granulated blast furnace slag (GGBS) on the flowability, cohesiveness and strength of cement paste, 30 mixes of cement paste samples with different water/cementitious material ratios and different GGBS contents were measured. To reveal the flowability mechanism of GGBS cement paste, the packing density of 5 different cementitious mixes with various GGBS content was measured. The water film thickness of each cement paste mix was calculated based on the packing density test, and the effect of water film thickness on the flowability of GGBS cement paste was discussed. Results demonstrated that addition of moderate GGBS could increase the flowability and compressive strength, but impair the cohesiveness. The best overall performance of cement paste occurs when 5% GGBS is added. The addition of GGBS had positive effect on packing density of cementitious materials. The water film thickness is the major governing factor of flowability of GGBS cement paste, and the flowability of cement paste increases with the increase of water film thickness.

Key words: flowing property, ground granulated blast furnace slag (GGBS), strength, water film thickness

中图分类号: 

  • TU528.52
[1] PAL S C, MUKHERJEE A, PATHAK S R. Investigation of hydraulic activity of ground granulated blast furnace slag in concrete[J]. Cement and Concrete Research, 2003, 33(9):1481-1486.
[2] HAWILEH R, ABDALLA J, FARDMANESH F, et al. Performance of reinforced concrete beams cast with different percentages of GGBS replacement to cement[J]. Archives of Civil and Mechanical Engineering, 2017, 17(3):511-519.
[3] 王强, 黎梦圆, 石梦晓. 水泥-钢渣-矿渣复合胶凝材料的水化特性[J]. 硅酸盐学报, 2014, 42(5):629-634.WANG Q, LI M Y, SHI M X. Hydration properties of cement-steel slag-ground granulated blast furnace slag complex binder[J]. Journal of The Chinese Ceramic Society, 2014, 42(5):629-634.
[4] 李胜男. 掺矿渣粉混凝土的架构理论研究[D]. 大连:大连理工大学建筑与土木工程学院, 2013.
[5] 杨文武, 钱觉时, 范英儒. 磨细高炉矿渣对海工混凝土抗冻性和氯离子扩散性能的影响[J]. 硅酸盐学报, 2009, 37(1):29-34.YANG W W, QIAN J S, FAN Y R. Effect of ground granulated blast furnace slag on both frost-resistance and chloride ions diffusion properties of marine concrete[J]. Journal of The Chinese Ceramic Society, 2009, 37(1):29-34.
[6] 张武满, 巴恒静. 磨细高炉矿渣和硅灰对重复荷载作用下混凝土氯离子透过性的影响[J]. 中国科学:技术科学, 2012, 42(12):1449-1455.ZHANG W M, BA H J. Effect of ground granulated blast-furnace slag (GGBFS) and silica fume (SF) on chloride migration through concrete subjected to repeated loading[J]. Science China Technology Science, 2012, 42(12):1449-1455.
[7] 李建勇, 姚燕, 田培. 利用超细矿渣和硅灰配制高性能混凝土的研究[J]. 混凝土, 1997,(4):12-22. 1997,(4):12-22.
[8] 朱江. 聚丙烯纤维在高性能混凝土中的应用[J]. 广东工业大学学报, 2000, 17(3):15-18.ZHU J, The application of polypropylene fiber in high performance concrete[J]. The application of polypropylene fiber in high performance concrete[J]. Journal of Guangdong University of Technology, 2000, 17(3):15-18.
[9] 罗金, 余本胜, 查进. 磨细矿渣配制大体积混凝土和高强混凝土的试验研究[J]. 煤炭工程, 2006,(1):78-81.LUO J, YU B S, ZHA J. Research on test of large volume concrete and high concrete with fine ground slag[J]. Coal Engineering, 2006,(1):78-81.
[10] 刘仍光. 水泥-矿渣复合胶凝材料的水化机理与长期性能[D]. 北京:清华大学土木工程学院, 2013.
[11] 刘仍光, 阎培渝. 水泥-矿渣复合胶凝材料中矿渣的水化特性[J]. 硅酸盐学报, 2012, 40(8):1112-1118.LIU R G, YAN P Y. Hydration characteristics of slag in cement-slag complex binder[J]. Journal of The Chinese Ceramic Society, 2012, 40(8):1112-1118.
[12] 姚立红, 李瑞林, 刘生超, 等. 水泥净浆流动度与混凝土流动性能相关性研究[J]. 水泥工程, 2016,(6):20-21. 2016,(6):20-21.
[13] 武斌. 水泥净浆和砂浆流动度与混凝土流变性能相关性试验[J]. 广东建材, 2016, 32(9):63-65. 2016, 32(9):63-65.
[14] AITCIN P C. High-performance Concrete[M].London (UK):E & FN Spon, 1998.
[15] OKAMURA H, OUNCJI M. Self-compacting concrete[J]. Journal of Advanced Concrete Technology, 2003, 1(1):5-15.
[16] British Standards Institution. BS EN 445:Grout for Prestressing Tendons-Test Methods[M]. London (UK):BSI, 1997.
[17] 陈嘉健, 雷元新, 徐畏婷, 等. 水泥浆水膜厚度的计算及在流动性中的影响[J]. 佛山科学技术学院学报(自然科学版), 2014, 32(3):49-56.CHEN J J, LEI Y X, XU W T, et al. Calculation of water film thickness and the effects on rheology[J]. Journal of Foshan University (Natural Science Edition), 2014, 32(3):49-56.
[1] 魏伟, 熊哲. FRP筋混凝土锚固长度的试验研究[J]. 广东工业大学学报, 2020, 37(03): 101-105.
[2] 梁仕华, 陈俊涛, 林焕生, 冯德銮, 龚星, 罗庆姿. 水泥固化淤泥废弃土作为填土材料的试验研究[J]. 广东工业大学学报, 2020, 37(02): 102-106.
[3] 梁仕华, 周锦程, 罗祺, 林焕生. 有机质对水泥固化淤泥土的力学特性影响试验研究[J]. 广东工业大学学报, 2019, 36(06): 86-91.
[4] 黄穗超, 胡正发, 张伟. 上转换材料LiY(MoO4)2:Yb3+/Er3+的光学特性以及温度传感特性的研究[J]. 广东工业大学学报, 2019, 36(01): 75-80.
[5] 刘亚栋, 杨雪强, 徐雷, 林耀康, 龚星. 考虑土体强度各向异性的边坡稳定性分析[J]. 广东工业大学学报, 2018, 35(06): 57-62.
[6] 王亚文, 谷爱昱, 严柏平, 雒浪. 步行能量采集器中磁致伸缩材料的机-磁耦合特性研究[J]. 广东工业大学学报, 2018, 35(04): 25-31.
[7] 梁仕华, 罗祺, 王蒙, 刘勇健, 尹应梅, 江志源. 石灰与水泥固化南沙锌污染软土试验研究[J]. 广东工业大学学报, 2017, 34(05): 80-85.
[8] 王战兵,刘丽孺,王璋元,李志生. 以风冷热泵热水机组为热源的集中空调系统运行能耗的e-p分析法的建立[J]. 广东工业大学学报, 2016, 33(06): 53-56.
[9] 刘燕龙, 原玲, 姜文超, 李东明, 王多强. 基于Calculix的船舶疲劳强度并行计算方法研究与应用[J]. 广东工业大学学报, 2015, 32(04): 77-82.
[10] 林欣达, 林穗, 姜文超, 李东明, 王多强. 有限元求解器Calculix预处理并行优化方法[J]. 广东工业大学学报, 2015, 32(04): 138-144.
[11] 卢志强, 李德源, Luca Diviani. 基于Tsai-Wu失效准则的TSCB人行桥强度分析[J]. 广东工业大学学报, 2014, 31(1): 101-106.
[12] 张海兵1,田甜2,文旭3 . 污湿环境下复合绝缘子电场分布的研究[J]. 广东工业大学学报, 2012, 29(2): 58-62.
[13] 杨雪强; 凌平平; 杨锐; 陈桂林; . 坡顶局部荷载下边坡的二维和三维稳定分析(Ⅰ)——强度折减的有限元法[J]. 广东工业大学学报, 2008, 25(4): 86-93.
[14] 杨雪强; 宫全美; 李彰明; . 对三种强度破坏准则的物理解释[J]. 广东工业大学学报, 2007, 24(03): 76-83.
[15] 罗志强; . 沥青路面空隙率对工程质量的影响分析[J]. 广东工业大学学报, 2006, 23(1): 36-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!