广东工业大学学报 ›› 2019, Vol. 36 ›› Issue (04): 52-58.doi: 10.12052/gdutxb.180140

• 综合研究 • 上一篇    下一篇

Dirichlet级数的广义级

陈青远, 霍颖莹   

  1. 广东工业大学 应用数学学院, 广东 广州 510520
  • 收稿日期:2018-10-29 出版日期:2019-06-18 发布日期:2019-05-31
  • 通信作者: 霍颖莹(1980-),女,副教授,主要研究方向为函数论复分析.E-mail:huoyingy@gdut.edu.cn E-mail:huoyingy@gdut.edu.cn
  • 作者简介:陈青远(1994-),女,硕士研究生,主要研究方向为函数论.
  • 基金资助:
    国家自然科学基金资助项目(11501127)

The Generalized Order of Dirichlet Series

Chen Qing-yuan, Huo Ying-ying   

  1. School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China
  • Received:2018-10-29 Online:2019-06-18 Published:2019-05-31

摘要: 研究了全平面上Dirichlet级数的广义级.采用Knopp-Kojima方法得到了关于Dirichlet级数的最大模和系数增长关系的结果,并在较弱的条件下将上述结果转化为Dirichlet级数的系数及其广义级的关系.

关键词: Dirichlet级数, 广义级, 慢增长

Abstract: The generalized order of Dirichlet series on the whole plane is studied. The Knopp-Kojima method is used to obtain the results of the growth relationship between the maximum modulus and the coefficients of Dirichlet series, and the above results are transformed into the relation between the coefficients of Dirichlet series and its generalized order under weak conditions.

Key words: Dirichlet series, generalized order, slow growth

中图分类号: 

  • O174.52
[1] VALIRON G. Sur l'abscisse de convergence des series de Dirichlet[J]. Bulletin de la Société Mathématique de France, 1924, 52:86-98
[2] VALIRON G. Théorie générale des séries de Dirichlet[M]. Paris:Gauthier-Villars, 1926.
[3] GU Z D, SUN D C. The growth of Dirichlet series[J]. Czechoslovak Mathematical Journal, 2010, 62(1):29-38
[4] LIANG M L, HUO Y Y. The lower order and linear order of multiple Dirichlet series[J]. Acta Mathematica Scientia, English Series, 2017, 37(1):131-138
[5] SEREMETA M N. Connection between the growth of the maximum of the modulus of an entire function and the moduli of the coefficients of its power series expansion[J]. Izvestiya Vysshikh Uchebnykh Zavedenii.Matematika, 1967, 2:100-108
[6] KAPOOR G, NAUTIYAL A. Polynomial approximation of an entire function of slow growth[J]. Journal of Approximation Theory, 1981, 32(1):64-75
[7] KONG Y Y, GAN H L. On orders and types of Dirichlet series of slow growth[J]. Turkish Journal of Mathematics, 2010, 34(1):1-12
[8] MANDELBROJT S. Dirichlet series:principles and methods[M]. Berlin:Springer Science & Business Media, 2012.
[9] KONG Y Y. On some q-orders and q-types of Dirichlet-Hadamard product function[J]. Acta Mathematica Sinica, Chinese Series, 2009, 52(6):1165-1172
[10] JIN Q Y, SUN D C. On the distribution of random Dirichlet series in the whole plane[J]. Turkish Journal of Mathematics, 2008, 32(3):245-254
[11] SHANG L N, GAO Z S. Entire functions defined by Dirichlet series[J]. Journal of Mathematical Analysis and Applications, 2008, 339(2):853-862
[12] HUO Y Y, KONG Y Y. On the generalized order of Dirichlet series[J]. Acta Mathematica Scientia, 2015, 35(1):133-139
[13] KNOPP K. Über die Konvergenzabszisse des Laplace-Integrals[J]. Mathematische Zeitschrift, 1951, 54(3):291-296
[14] HUO Y Y, KONG Y Y. On generalized orders and generalized types of Dirichlet series in the right half-plane[J]. Acta Mathematica Scientia, 2014, 34B(1):175-182
[15] 余家荣, 丁晓庆, 田范基.Dirichlet级数与随机Dirichlet级数的值分布[M].武汉:武汉大学出版社, 2004.
[1] 毕家烨, 霍颖莹. 多重Laplace-Stieltjes变换的两个等式[J]. 广东工业大学学报, 2021, 38(01): 82-88.
[2] 尤秀英; 王福龙; . 下侧二重Dirichlet级数与L-Stieltjes积分的特殊级[J]. 广东工业大学学报, 2003, 20(2): 84-89.
[3] 尤秀英; . 二重Dirichlet级数与随机Dirichlet级数的迭代级数的收敛性[J]. 广东工业大学学报, 2003, 20(1): 72-76.
[4] 尤秀英; . 双侧二重随机Dirichlet级数的相关收敛公式[J]. 广东工业大学学报, 2002, 19(3): 91-95.
[5] 尤秀英; . Dirichlet级数与随机Dirichlet级数的迭代级数[J]. 广东工业大学学报, 2002, 19(1): 101-105.
[6] 尤秀英; . 下侧或双侧二重随机Dirichlet级数的θ线性级与下级[J]. 广东工业大学学报, 2001, 18(4): 101-106.
[7] 尤秀英; . 下侧二重随机Dirichlet级数的收敛性与增长性[J]. 广东工业大学学报, 2001, 18(3): 85-91.
[8] 尤秀英; . 下侧或双侧二重Dirichlet级数收敛性[J]. 广东工业大学学报, 2000, 17(4): 97-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!