广东工业大学学报 ›› 2021, Vol. 38 ›› Issue (01): 82-88.doi: 10.12052/gdutxb.200025

• 综合研究 • 上一篇    下一篇

多重Laplace-Stieltjes变换的两个等式

毕家烨, 霍颖莹   

  1. 广东工业大学 应用数学学院,广东 广州 510520
  • 收稿日期:2012-02-12 出版日期:2021-01-25 发布日期:2020-12-21
  • 通信作者: 霍颖莹(1980-),女,副教授,主要研究方向为函数论复分析,E-mail:huoyingy@gdut.edu.cn E-mail:huoyingy@gdut.edu.cn
  • 作者简介:毕家烨(1992-),男,硕士研究生,主要研究方向为函数论
  • 基金资助:
    国家自然科学基金资助项目(11501127);广东省自然科学基金资助项目(2018A030313954)

Two Equalities of Multiple Laplace-Stieltjes Transform

Bi Jia-ye, Huo Ying-ying   

  1. School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China
  • Received:2012-02-12 Online:2021-01-25 Published:2020-12-21

摘要: 受Dirichlet级数的增长性研究的一个重要等式启发, 把相应结果推广到多重Laplace-Stieltjes变换, 并得到一个形式优美的等式, 类似于内积空间中的Parseval等式。

关键词: Laplace-Stieltjes变换, Dirichlet级数, 全变差, Riemann-Stieltjes积分

Abstract: Inspired by an important equality in the study of the growth of Dirichlet series, the corresponding results are generalized in this paper by invoking some properties of functions of bounded Vitali variation, some properties of Riemann-Stieltjes integral and some results from real analysis. Moreover, a well-formed equality is obtained, which is similar to the Parseval’s equality in the inner product space.

Key words: Laplace-Stieltjes transform, Dirichlet series, total variation, Riemann-Stieltjes integration

中图分类号: 

  • O174.52
[1] LEE T Y. Henstock-kurzweil Integration on euclidean Spaces[M]. Singapore :World Scientific, 2011:180-181.
[2] DURAÑONA Y VEDIA A, TREJO C A. Recintos de convergencia de las integrales dobles de Laplace-Stieltjes [J]. Publicaciones de la Facultad de Ciencias Fisicomatematicas, Universidad Nacional de la Plata, Contribucional Estudio de las Ciencias Fisicasy Matematicas, Series Matematica, 1937, 109: 315-327.
[3] BERNSTEIN D L. The double Laplace integral [J]. Duke Mathematics Journal, 1941, 8(3): 460-496.
[4] 余家荣. 二重Dirichlet级数与二重Laplace变换的收敛性[J]. 武汉大学学报(自然科学版), 1962, 1(1): 1-16.
YU J R. On the convergence of the double Dirichlet series and the double Laplace transform [J]. Wuhan University Journal of Natural Sciences, 1962, 1(1): 1-16.
[5] LIANG M L, GAO Z S. On convergence and growth of multiple dirichlet series [J]. Mathematical Notes, 2010, 88(5): 732-740.
[6] KONG Y Y, HONG Y. On the growth of Laplace-Stieltjes transforms and the singular direction of complex analysis[M]. Guangzhou:Jinan University Press, 2010.
[7] 陈青远, 霍颖莹. Dirichlet级数的广义级[J]. 广东工业大学学报, 2019, 36(4): 52-58.
CHEN Q Y, HUO Y Y. The generalized order of Dirichlet series [J]. Journal of Guangdong University of Technology, 2019, 36(4): 52-58.
[8] CUI Y Q, XU H Y, LI N. The growth on the maximum modulus of double dirichlet series [J]. Journal of Function Spaces, 2019: 1-12.
[9] LIANG M L, HUO Y Y. On order and type of multiple Dirichlet series [J]. Acta Mathematica Scientia(English Series), 2017, 37(1): 131-138.
[10] XU H Y, WANG H. The growth and approximation for an analytic function represented by Laplace-Stieltjes transforms with generalized order converging in the half plane [J]. Journal of Inequalities and Applications, 2018(1): 1-16.
[11] FOLLAND G B. Real analysis: modern techniques and their applications[M]. 2nd ed.New York: Wiley Interscience, 1999: 223.
[12] RUDIN W. Real and complex analysis[M]. 3rd ed.New York: Tata McGraw-hill education, 1987: 130.
[13] MUNKRES J R. Topology[M]. 2nd ed. New Jersey :Prenctice Hall, 2000: 130.
[14] ZORICH V A. Mathematical analysis II[M]. 2nd ed. Berlin: Springer, 2016: 381.
[15] 余家荣, 丁晓庆, 田范基. Dirichlet级数与随机Dirichlet级数的值分布[M]. 武汉: 武汉大学出版社, 2004.
[16] 张恭庆, 林源渠. 泛函分析讲义(上)[M]. 北京: 北京大学出版社, 2001: 59-62.
[1] 陈青远, 霍颖莹. Dirichlet级数的广义级[J]. 广东工业大学学报, 2019, 36(04): 52-58.
[2] 尤秀英; 王福龙; . 下侧二重Dirichlet级数与L-Stieltjes积分的特殊级[J]. 广东工业大学学报, 2003, 20(2): 84-89.
[3] 尤秀英; . 二重Dirichlet级数与随机Dirichlet级数的迭代级数的收敛性[J]. 广东工业大学学报, 2003, 20(1): 72-76.
[4] 尤秀英; . 双侧二重随机Dirichlet级数的相关收敛公式[J]. 广东工业大学学报, 2002, 19(3): 91-95.
[5] 尤秀英; . 下侧L-S变换及其迭代象函数的q.s.增长性[J]. 广东工业大学学报, 2002, 19(2): 87-91.
[6] 尤秀英; . Dirichlet级数与随机Dirichlet级数的迭代级数[J]. 广东工业大学学报, 2002, 19(1): 101-105.
[7] 尤秀英; . 下侧或双侧二重随机Dirichlet级数的θ线性级与下级[J]. 广东工业大学学报, 2001, 18(4): 101-106.
[8] 尤秀英; . 下侧二重随机Dirichlet级数的收敛性与增长性[J]. 广东工业大学学报, 2001, 18(3): 85-91.
[9] 尤秀英; . 下侧或双侧二重L-Stieltjes变换与对应指数级数收敛性[J]. 广东工业大学学报, 2001, 18(2): 103-107.
[10] 尤秀英; . 下侧或双侧二重Dirichlet级数收敛性[J]. 广东工业大学学报, 2000, 17(4): 97-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!