广东工业大学学报 ›› 2019, Vol. 36 ›› Issue (05): 38-42.doi: 10.12052/gdutxb.180177

• 综合研究 • 上一篇    下一篇

结肠癌细胞代谢模型解的存在性

梁小珍, 卫雪梅   

  1. 广东工业大学 应用数学学院, 广东 广州 510520
  • 收稿日期:2018-12-24 出版日期:2019-08-21 发布日期:2019-08-06
  • 通信作者: 卫雪梅(1972-),女,教授,主要研究方向为偏微分方程.E-mail:wxm_gdut@163.com E-mail:wxm_gdut@163.com
  • 作者简介:梁小珍(1992-),女,硕士研究生,主要研究方向为偏微分方程.
  • 基金资助:
    国家自然科学基金资助项目(11101095);广东省高校特色创新类项目(2016KTSCX028);广东省高层次人才项目(2014011);研究生教育创新项目(2014QTLXXM17)

Existence of the Solution to the Metabolic Model of Colon Cancer Cells

Liang Xiao-zhen, Wei Xue-mei   

  1. School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China
  • Received:2018-12-24 Online:2019-08-21 Published:2019-08-06

摘要: 研究了结肠癌细胞代谢数学模型.该模型由包含不连续项的5个相互耦合的反应扩散方程组成.本文运用抛物型方程的Lp理论和Schauder不动点定理以及逼近方法证明了该数学模型整体解的存在性.

关键词: 结肠癌, 整体解, 存在性

Abstract: The metabolic model of colon cancer cells is studied. The model contains five coupled reaction diffusion equations, in which some equations involve discontinuous terms. It is proved that this problem has a global solution by using the Lp-theory for parabolic equations, the Schauder Fixed Point Theorem and approximation method.

Key words: colon cancer, global solution, existence

中图分类号: 

  • O175
[1] 杨琼, 夏良平. 肿瘤代谢共生的研究进展[J]. 临床肿瘤学杂志, 2015, 20(4):371-375 YANG Q, XIA L P. Research progress of metabolic symbiosis in cancer[J]. Chinese Clinical Oncology, 2015, 20(4):371-375
[2] PENKERT J, RIPPERGER T, SCHIECK M, et al. On metabolic reprogramming and tumor biology:A comprehensive survey of metabolism in breast cancer[J]. Oncotarget, 2016, 7(41):67626-67649
[3] LAURA P, RUBEN B, EMESTA F, et al. Targeting metabolic symbiosis to overcome resistance to antiangiogenic therapy[J]. Cell Reports, 2016, 15(6):1161-1174
[4] CHAE Y C, KIM J H. Cancer stem cell metabolism:target for cancer therapy[J]. Bmb Reports, 2018, 51(7):319-326
[5] VAN D C, KIM J W. Convergence of cancer metabolism and immunity:an overview[J]. Biomoles & Therapeutics, 2018, 26(1):4-9
[6] MENDOZA-JUEZ B, CALVO G F, VICTOR M, et al. A mathematical model for the glucoselactate metabolism of in vitro cancer cells[J]. Bulletin of Mathematical Biology, 2012, 74(5):1125-1142
[7] MCGILLEN J B, KELLY C J, GAFFNEY E A, et al. Glucose-lactate metabolic cooperation in cancer:Insights from a spatial mathematical model and implications for targeted therapy[J]. Journal of Theoretical Biology, 2014, 361(1):190-203
[8] LEE M, CHEN G T, PUTTOCK E, et al. Mathematical modeling links Wnt signaling to emergent patterns of metabolism in colon cancer[J]. Molecular Systems Biology, 2017, 13(2):912
[9] CUI S B, FRIEDMAN A. Analysis of a mathematical model of the growth of necrotic tumors[J]. Journal of Mathematical Analysis & Applications, 2001, 255(2):636-677
[10] Cui S B. Formation of necrotic cores in the growth of tumors:analytic results[J]. Acta Mathematica Scientia, 2006, 26B(4):781-796
[11] 姜礼尚, 陈亚浙. 数学物理方程讲义[M]. 北京:高等教育出版社, 2007.
[12] WEI X M. Global existence for a free boundary problem modeling the growth of necrotic tumors in the presence of inhibitors[J]. International Journal of Pure & Applied Mathematics, 2006, 28(3):321-338
[13] CUI S B. Existence of a stationary solution for the modified king-ward tumor growth model[J]. Advances in Applied Mathematics, 2006, 36(4):421-445
[14] CUI S B. Global existence of solutions for a free boundary problem modeling the growth of necrotic tumors[J]. Interfaces & Free Boundaries, 2005, 7(2):147-159
[15] WEI X M, GUO C H. Global existence for a mathematical model of the immune response to cancer[J]. Nonlinear Analysis Real World Applications, 2010, 11(5):3903-3911
[16] 陈美癸, 卫雪梅. 视网膜氧分布与脑红蛋白作用模型解的存在唯一性[J]. 广东工业大学学报, 2018, 35(5):45-50 CHEN M G, WEI X M. Existence and uniqueness of global solution for a model of retinal oxygen distribution and the role of neuroglobin[J]. Journal of Guangdong University of Technology, 2018, 35(5):45-50
[17] 卢创业, 卫雪梅. 一个视网膜血管肿瘤数学模型整体解的存在唯一性[J]. 广东工业大学学报, 2016, 33(3):70-75 LU C Y, WEI X M. Existence and uniqueness of global solution to a mathematical model of retinal vascular tumors[J]. Journal of Guangdong University of Technology, 2016, 33(3):70-75
[18] 崔尚斌. 偏微分方程现代理论引论[M]. 北京:科学出版社, 2015.
[19] LADYZENSKAJA O A, SOLONNIKOV V A, URALCEVA N N. Linear and quasilinear partial differential equations of parabolic type, translations of mathematical monographs[M]. Providence:Amer Math Soc, 1968, 23.
[1] 周云, 卫雪梅. 一个具有Robin自由边界的双曲肿瘤生长模型解的定性分析[J]. 广东工业大学学报, 2021, 38(02): 60-65.
[2] 陈美癸, 卫雪梅. 视网膜氧分布与脑红蛋白作用模型解的存在唯一性[J]. 广东工业大学学报, 2018, 35(05): 45-50.
[3] 卢创业, 卫雪梅. 一个视网膜血管肿瘤数学模型整体解的存在唯一性[J]. 广东工业大学学报, 2016, 33(03): 70-75.
[4] 陆宇. 一类四阶边值问题解的存在性[J]. 广东工业大学学报, 2014, 31(2): 69-73.
[5] 王琳. 随机延迟微分方程的正整体解及矩有界[J]. 广东工业大学学报, 2013, 30(1): 73-75.
[6] 陈学松; . 矩阵方程X+A~* F(X)A=Q解的存在性与扰动分析[J]. 广东工业大学学报, 2007, 24(03): 21-23.
[7] 杨淑伶; . 一类反应扩散方程的整体吸引子[J]. 广东工业大学学报, 2005, 22(3): 113-115.
[8] 杨淑伶; . 一类反应扩散方程的整体解[J]. 广东工业大学学报, 2003, 20(2): 93-96.
[9] 梁锦鹏; . 具有二个奇点的Van der pol型方程的极限环[J]. 广东工业大学学报, 2000, 17(2): 96-100.
[10] 梁锦鹏; . 非线性方程的另一Филиппов定理[J]. 广东工业大学学报, 1999, 16(4): 83-86.
[11] 梁锦鹏. 方程(dx)/(dt)=φ(y)-F(x),(dy)/(dt)=-g(x)的极限环存在定理[J]. 广东工业大学学报, 1996, 13(4): 17-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!