广东工业大学学报 ›› 2019, Vol. 36 ›› Issue (05): 38-42.doi: 10.12052/gdutxb.180177
梁小珍, 卫雪梅
Liang Xiao-zhen, Wei Xue-mei
摘要: 研究了结肠癌细胞代谢数学模型.该模型由包含不连续项的5个相互耦合的反应扩散方程组成.本文运用抛物型方程的Lp理论和Schauder不动点定理以及逼近方法证明了该数学模型整体解的存在性.
中图分类号:
[1] 杨琼, 夏良平. 肿瘤代谢共生的研究进展[J]. 临床肿瘤学杂志, 2015, 20(4):371-375 YANG Q, XIA L P. Research progress of metabolic symbiosis in cancer[J]. Chinese Clinical Oncology, 2015, 20(4):371-375 [2] PENKERT J, RIPPERGER T, SCHIECK M, et al. On metabolic reprogramming and tumor biology:A comprehensive survey of metabolism in breast cancer[J]. Oncotarget, 2016, 7(41):67626-67649 [3] LAURA P, RUBEN B, EMESTA F, et al. Targeting metabolic symbiosis to overcome resistance to antiangiogenic therapy[J]. Cell Reports, 2016, 15(6):1161-1174 [4] CHAE Y C, KIM J H. Cancer stem cell metabolism:target for cancer therapy[J]. Bmb Reports, 2018, 51(7):319-326 [5] VAN D C, KIM J W. Convergence of cancer metabolism and immunity:an overview[J]. Biomoles & Therapeutics, 2018, 26(1):4-9 [6] MENDOZA-JUEZ B, CALVO G F, VICTOR M, et al. A mathematical model for the glucoselactate metabolism of in vitro cancer cells[J]. Bulletin of Mathematical Biology, 2012, 74(5):1125-1142 [7] MCGILLEN J B, KELLY C J, GAFFNEY E A, et al. Glucose-lactate metabolic cooperation in cancer:Insights from a spatial mathematical model and implications for targeted therapy[J]. Journal of Theoretical Biology, 2014, 361(1):190-203 [8] LEE M, CHEN G T, PUTTOCK E, et al. Mathematical modeling links Wnt signaling to emergent patterns of metabolism in colon cancer[J]. Molecular Systems Biology, 2017, 13(2):912 [9] CUI S B, FRIEDMAN A. Analysis of a mathematical model of the growth of necrotic tumors[J]. Journal of Mathematical Analysis & Applications, 2001, 255(2):636-677 [10] Cui S B. Formation of necrotic cores in the growth of tumors:analytic results[J]. Acta Mathematica Scientia, 2006, 26B(4):781-796 [11] 姜礼尚, 陈亚浙. 数学物理方程讲义[M]. 北京:高等教育出版社, 2007. [12] WEI X M. Global existence for a free boundary problem modeling the growth of necrotic tumors in the presence of inhibitors[J]. International Journal of Pure & Applied Mathematics, 2006, 28(3):321-338 [13] CUI S B. Existence of a stationary solution for the modified king-ward tumor growth model[J]. Advances in Applied Mathematics, 2006, 36(4):421-445 [14] CUI S B. Global existence of solutions for a free boundary problem modeling the growth of necrotic tumors[J]. Interfaces & Free Boundaries, 2005, 7(2):147-159 [15] WEI X M, GUO C H. Global existence for a mathematical model of the immune response to cancer[J]. Nonlinear Analysis Real World Applications, 2010, 11(5):3903-3911 [16] 陈美癸, 卫雪梅. 视网膜氧分布与脑红蛋白作用模型解的存在唯一性[J]. 广东工业大学学报, 2018, 35(5):45-50 CHEN M G, WEI X M. Existence and uniqueness of global solution for a model of retinal oxygen distribution and the role of neuroglobin[J]. Journal of Guangdong University of Technology, 2018, 35(5):45-50 [17] 卢创业, 卫雪梅. 一个视网膜血管肿瘤数学模型整体解的存在唯一性[J]. 广东工业大学学报, 2016, 33(3):70-75 LU C Y, WEI X M. Existence and uniqueness of global solution to a mathematical model of retinal vascular tumors[J]. Journal of Guangdong University of Technology, 2016, 33(3):70-75 [18] 崔尚斌. 偏微分方程现代理论引论[M]. 北京:科学出版社, 2015. [19] LADYZENSKAJA O A, SOLONNIKOV V A, URALCEVA N N. Linear and quasilinear partial differential equations of parabolic type, translations of mathematical monographs[M]. Providence:Amer Math Soc, 1968, 23. |
[1] | 周云, 卫雪梅. 一个具有Robin自由边界的双曲肿瘤生长模型解的定性分析[J]. 广东工业大学学报, 2021, 38(02): 60-65. |
[2] | 陈美癸, 卫雪梅. 视网膜氧分布与脑红蛋白作用模型解的存在唯一性[J]. 广东工业大学学报, 2018, 35(05): 45-50. |
[3] | 卢创业, 卫雪梅. 一个视网膜血管肿瘤数学模型整体解的存在唯一性[J]. 广东工业大学学报, 2016, 33(03): 70-75. |
[4] | 陆宇. 一类四阶边值问题解的存在性[J]. 广东工业大学学报, 2014, 31(2): 69-73. |
[5] | 王琳. 随机延迟微分方程的正整体解及矩有界[J]. 广东工业大学学报, 2013, 30(1): 73-75. |
[6] | 陈学松; . 矩阵方程X+A~* F(X)A=Q解的存在性与扰动分析[J]. 广东工业大学学报, 2007, 24(03): 21-23. |
[7] | 杨淑伶; . 一类反应扩散方程的整体吸引子[J]. 广东工业大学学报, 2005, 22(3): 113-115. |
[8] | 杨淑伶; . 一类反应扩散方程的整体解[J]. 广东工业大学学报, 2003, 20(2): 93-96. |
[9] | 梁锦鹏; . 具有二个奇点的Van der pol型方程的极限环[J]. 广东工业大学学报, 2000, 17(2): 96-100. |
[10] | 梁锦鹏; . 非线性方程的另一Филиппов定理[J]. 广东工业大学学报, 1999, 16(4): 83-86. |
[11] | 梁锦鹏. 方程(dx)/(dt)=φ(y)-F(x),(dy)/(dt)=-g(x)的极限环存在定理[J]. 广东工业大学学报, 1996, 13(4): 17-20. |
|