广东工业大学学报 ›› 2018, Vol. 35 ›› Issue (05): 45-50.doi: 10.12052/gdutxb.170178
陈美癸, 卫雪梅
Chen Mei-gui, Wei Xue-mei
摘要: 研究视网膜中氧分布与脑红蛋白作用的数学模型,该模型包含了4组相互耦合的反应扩散方程组.先通过运用Banach不动点定理,抛物型方程的Lp估计证明了模型的局部解的存在唯一性,然后利用延拓方法得到了整体解的存在唯一性.
中图分类号:
[1] ANDERSON B, SALTZMAN H A. Retinal oxygen utilization measured by hyperbaric blackout[J]. Arch Ophthalmol, 1964, 72(6):792-795 [2] ANDERSON B. Ocular effects of changes in oxygen and carbon dioxide tension[J]. Trans Am Ophthalmol Soc, 1968, 66:423-474 [3] YU D Y, CRINGLE S J. Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease[J]. Prog Retin Eye Res, 2001, 20(2):175-208 [4] WANGSA-WIRAWAN N D, LINSENMEIER R A. Retinal oxygen:fundamental and clinical aspects[J]. Arch Ophthalmol, 2003, 121(4):547-557 [5] YU D Y, CRINGLE S J, VALTER K, et al. Photoreceptor death, trophic factor expression, retinal oxygen status, and photoreceptor function in the P23H rat[J]. Invest Ophthalmol Vis Sci, 2004, 45(6):2013-2019 [6] STEFANSSON E. Retinal oxygen tension is higher in light than dark[J]. Pediatr Res, 1988, 23(1):5-8 [7] PADNICK-SILVER L, LINSENMEIER R A. Effect of acute hyperglycemia on oxygen and oxidative metabolism in the intact cat retina[J]. Invest Ophthalmol Vis Sci, 2003, 44(2):745-750 [8] YU D Y, CRINGLE S J, SU E N. Intraretinal oxygen distribution in the monkey retina and the response to systemic hyperoxia[J]. Invest Ophthalmol Vis Sci, 2005, 46(12):4728-4733 [9] KOHEN R, NYSKA A. Invited review:oxidation of biological systems:oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification[J]. Toxicol Pathol, 2002, 30(6):620-650 [10] CRINGLE S J, YU D Y. A multi-layer model of retinal oxygen supply and consumption helps explain the muted rise in inner retinal PO(2) during systemic hyperoxia[J]. Comparative Biochemistry & Physiology Part A, 2002, 132(1):61-66 [11] YU D Y, CRINGLE S J. Outer retinal anoxia during dark adaptation is not a general property of mammalian retinas[J]. Comparative Biochemistry & Physiology Part A, 2002, 132(1):47-52 [12] ROBERTS P A, GAFFNEY E A, LUTHERT P J, et al. Retinal oxygen distribution and the role of neuroglobin[J]. Journal of Mathematical Biology, 2016, 73(1):1-38 [13] 姜礼尚, 陈亚浙. 数学物理方程讲义[M]. 北京:高等教育出版社, 2007. [14] FRIEDMAN A, LOLAS G. Analysis of a mathematical model of tumor lymphangiogenesis[J]. Math Models Methods Appl Sci, 2005, 15:95-107 [15] CUI S B, WEI X M. Global existence for a parabolic-hyperbolic free boundary problem modelling tumor growth[J]. Acta Math Appl Sinica, English series, 2005, 4:597-614 [16] WEI X M, GUO C. Global Existence for a mathematical model of the immune response to canner[J]. Nonlinear Analysis:Real World Applications, 2010(11):3903-3911 [17] WEI X M, CUI S B. Existence and uniqueness of the global solution for a mathematical model of the use of macrophages in tumor medicine[J]. Nonlinear Analysis:Real World Applications, 2007, 8:922-938 [18] WEI X M, CUI S B. Existence and uniqueness of global solutions for a mathematical model of antiangiogenesis in tumor growth[J]. Nonlinear Analysis:Real World Applications, 2008, 9(5):1827-1836 [19] WEI X M. Global existence for a free boundary problem modeling the growth of necrotic tumors in the presence of inhibitors[J]. Inter Pure Appl. Math, 2006, 280:321-338 [20] 崔尚斌. 偏微分方程现代理论引论[M]. 北京:科学出版社, 2015. [21] LADYZENSKAJA O A, SOLONNIKOV V A, URALCEVA N N. Linear and quasilinear partial differential equations of parabolic type, translations of mathematical monographs[M]. Amer Math Soc, 1968, 23. |
[1] | 周云, 卫雪梅. 一个具有Robin自由边界的双曲肿瘤生长模型解的定性分析[J]. 广东工业大学学报, 2021, 38(02): 60-65. |
[2] | 梁小珍, 卫雪梅. 结肠癌细胞代谢模型解的存在性[J]. 广东工业大学学报, 2019, 36(05): 38-42. |
[3] | 卢创业, 卫雪梅. 一个视网膜血管肿瘤数学模型整体解的存在唯一性[J]. 广东工业大学学报, 2016, 33(03): 70-75. |
[4] | 王琳. 随机延迟微分方程的正整体解及矩有界[J]. 广东工业大学学报, 2013, 30(1): 73-75. |
[5] | 卫雪梅; . 散度形式的非古典抛物方程解的存在唯一性[J]. 广东工业大学学报, 2005, 22(4): 111-116. |
[6] | 杨淑伶; . 一类反应扩散方程的整体解[J]. 广东工业大学学报, 2003, 20(2): 93-96. |
|