广东工业大学学报 ›› 2019, Vol. 36 ›› Issue (06): 80-85.doi: 10.12052/gdutxb.190032

• 综合研究 • 上一篇    下一篇

基于CFD流体仿真模拟的絮凝池流态分析及方案设计

周倩倩, 张天翔, 孙琼   

  1. 广东工业大学 土木与交通工程学院, 广东 广州 510006
  • 收稿日期:2019-03-04 出版日期:2019-11-28 发布日期:2019-11-28
  • 作者简介:周倩倩(1984-),女,副教授,博士,主要研究方向为市政排水.E-mail:qiaz@gdut.edu.cn.
  • 基金资助:
    广东省公益研究与能力建设基金资助项目(2017A020219003);广州市科技计划项目(201804010406)

Analysis and Design of Flocculation Tank of Water Supply Plant Based on CFD Simulation of Flow Simulation

Zhou Qian-qian, Zhang Tian-xiang, Sun Qiong   

  1. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2019-03-04 Online:2019-11-28 Published:2019-11-28

摘要: 采用计算流体动力学仿真分析(COMSOL-CFD),解决Z市给水厂中1个供水系列出水效果不好的问题.通过对絮凝池进行模型构建和分析,指出现运行的絮凝池结构和尺寸设计不合理,导致絮凝池絮凝效果不好,沉淀池末端才见絮体的问题.本文提出了3种改造方案,并进行构筑物建模、流态分析和计算优化,为实际改造工程提供依据,探讨了COMSOL-CFD模型在给水处理方案设计和改造中的应用及效果.

关键词: COMSOL-CFD, 模拟计算, 絮凝, 给水构筑物, 改造设计

Abstract: The Computational Fluid Dynamics (CFD) module in COMSOL Multiphasic software is used to construct the models comparing simulation schemes and the analysis results of a series of flocculation tanks in Z City's water plant. It is found that the structure and size of existing flocculation tank are unreasonable in design, which has a bad effect on flocculation, and leads to flocs being observed at the end of the sedimentation tank. Based on the calculation results, three transformation schemes are designed and proposed, which are supplemented by structure modeling, flow analysis and calculation optimization, and the advantages and disadvantages of each transformation scheme are listed, thus providing the basis for the actual reconstruction project. Finally, the application and effect of COMSOL-CFD technology in the schemes design and modification of water treatment are discussed, with practical conclusions of COMSOL-CFD in water treatment engineering obtained.

Key words: COMSOL-CFD, simulation calculation, flocculation, water supply structure, reconstruction design

中图分类号: 

  • X703.1
[1] 常青. 水处理絮凝学[M]. 2版. 北京:中国化学工业出版社:33-39.
[2] 曾立云, 余昌全, 常青. 异波折板流场模拟分析与结构优化[J]. 环境科学学报, 2011, 31(12):2634-2641 ZENG L Y, YU C Q, CHANG Q. Simulation analysis of flow field and structure optimization of asynchronous folded plates[J]. Acta Scientiae Circumstantiae, 2011, 31(12):2634-2641
[3] 常青. 絮凝动力学的现状与研究方法进展[J]. 环境科学学报, 2015, 35(10):3042-3049 CHANG Q. Current state of flocculation dynamics and methodology progress[J]. Acta Scientiae Circumstantiae, 2015, 35(10):3042-3049
[4] 杨小林, 杨开明, 王华, 等. 基于FLUENT的折板絮凝池三维涡旋水流数值模拟[J]. 给水排水, 2009, 45(8):21-23 YANG X L, YANG K M, WANG H, et al. Numerical simulation of 3D vortex flow for folded plate flocculation tank based on fluent[J]. Water & Wastewater Engineering, 2009, 45(8):21-23
[5] 宋佩佩. 电絮凝技术处理砷锑废水机理及多物理场数值模拟的研究[D]. 长沙:湖南大学, 2017.
[6] LONGEST P W, MICHAEL J. OLDHAM mutual enhancements of CFD modeling and experimental data:a case study of 1-μm particle deposition in a branching airway model[J]. Inhalation Toxicology, 2006, 18(10):761-771
[7] 徐轶, 徐青. 基于COMSOL Multiphysics的渗流有限元分析[J]. 武汉大学学报(工学版), 2014, 47(2):165-170 XU Y, XU Q. Finite element analysis of seepage based on COMSOL multiphysics[J]. Engineering Journal of Wuhan University, 2014, 47(2):165-170
[8] 屈强, 马鲁铭, 王红武. 折流式沉淀池流态模拟[J]. 中国给水排水, 2005, 21(4):58-61. QU Q, MA L M, WANG H W. Simulation of flow pattern in baffled sedimentation Tank[J]. China Water & Wastewater, 2005, 21(4):58-61
[9] 朱炜. 污水处理构筑物流态模拟与溢流污水高效处理装置优化研究[D]. 上海:同济大学, 2006.
[10] 范文飙, 李伟光, 公绪金. 基于CFD流场计算的水力桨隔板絮凝池絮凝效果研究[J]. 给水排水, 2016, 52(4):22-27 FAN W B, LI W G, GONG X J. Study on flocculation tank with hydraulic impeller based on computation fluid dynamics[J]. Water & Wastewater Engineering, 2016, 52(4):22-27
[11] VÁZQUEZ A, NAVA J L, CRUZ R, et al. The importance of current distribution and cell hydrodynamic analysis for the design of electrocoagulation reactors[J]. Journal of Chemical Technology and Biotechnology, 2014, 89(2):220-229
[12] 宋峻林, 唐荣联, 王洪. 絮凝过程CFD数值模拟研究[J]. 现代化工, 2018, 38(8):231-235 SONG J L, TANG R L WANG H. A review on CFD numerical simulation of flocculation process[J]. Modern Chemical Industry, 2018, 38(8):231-235
[13] 刘存, 王庆涛, 陈翔宇. 网格絮凝池结构参数对流场影响的数值模拟[J]. 水资源与水工程学报, 2018, 29(4):162-167 LIU C, WANG Q T, CHEN X Y. Numerical simulation of the effect of the structure parameters on the flow field in grid flocculation tank[J]. Journal of Water Resources & Water Engineering, 2018, 29(4):162-167
[14] 朱鉴, 张浩晨, 陈炳丰, 等. 基于涡粒子的真实感烟雾快速模拟[J]. 广东工业大学学报, 2019, 36(3):25-31 ZHU J, ZHANG H C, CHEN B F, et al. Fast simulation of realistic smoke based on vortex particles[J]. Journal of Guangdong University of Technology, 2019, 36(3):25-31
[15] 黄辉, 李冬梅, 阮彩群, 等. 高分子絮凝剂对水厂排泥水的调质效果与絮凝形态学特性[J]. 广东工业大学学报, 2011, 28(2):12-18 HUANG H, LI D M, RUAN C Q, et al. The conditioning effect of the sludge from water plant with polymer flocculant AP and morphologic properties[J]. Journal of Guangdong University of Technology, 2011, 28(2):12-18
[1] 黄辉, 李冬梅, 阮彩群, 何娜, 任毅, 刘春柳. 高分子絮凝剂对水厂排泥水的调质效果与絮凝形态学特性[J]. 广东工业大学学报, 2011, 28(2): 12-16.
[2] 刘立凡; 梅胜; 郭晶; 阮彩群; . 利用糖蜜废液培养微生物絮凝剂[J]. 广东工业大学学报, 2008, 25(2): 13-16.
[3] 李冬梅; 金同轨; 李志生; 谭万春; . 高分子絮凝剂质量浓度对泥沙絮体分形结构的影响[J]. 广东工业大学学报, 2006, 23(3): 40-45.
[4] 李冬梅; 张弘; . 低温低浊水的微絮凝-深床直接过滤技术研究[J]. 广东工业大学学报, 2003, 20(2): 65-69.
[5] 吴海涛; 黄运尧; . 电梯导轨加工工艺研究及对 6m 龙门刨床的改造设计[J]. 广东工业大学学报, 1997, 14(4): 65-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!