广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (03): 106-113.doi: 10.12052/gdutxb.190104

• • 上一篇    下一篇

CZTSSe薄膜与Mo背电极接触特性的数值分析

庄楚楠, 许佳雄, 林俊辉   

  1. 广东工业大学 材料与能源学院, 广东 广州 510006
  • 收稿日期:2019-08-17 出版日期:2020-05-12 发布日期:2020-05-21
  • 通信作者: 许佳雄(1984-),男,副教授,博士,研究生导师,主要研究方向为半导体光电材料及器件,E-mail:xujiaxiong@dut.edu.cn E-mail:xujiaxiong@dut.edu.cn
  • 作者简介:庄楚楠(1995-),男,硕士研究生,主要研究方向为半导体光电材料及器件
  • 基金资助:
    国家自然科学基金资助项目(61504029);广东省科技计划项目(2017A010104017)

Numerical Analysis of Contact Characteristics between CZTSSe Thin Film and Mo Back Electrode

Zhuang Chu-nan, Xu Jia-xiong, Lin Jun-hui   

  1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2019-08-17 Online:2020-05-12 Published:2020-05-21

摘要: 为分析CZTSSe薄膜太阳能电池的背电极接触特性,采用AFORS-HET(Automat for Simulation of HETerostructures) v2.5软件对CZTSSe/Mo(S,Se)2/Mo结构进行数值分析,研究CZTSSe的带隙和电子亲和能、Mo(S,Se)2界面层的厚度以及带隙对CZTSSe与Mo电极的电学接触特性的影响。结果表明CZTSSe的带隙和电子亲和能的增大,使得CZTSSe/Mo(S,Se)2/Mo的欧姆接触减弱并向整流接触转变;对于带隙较窄的CZTSSe,加入界面层使CZTSSe/Mo(S,Se)2/Mo形成的欧姆接触转变为整流接触,随着界面层厚度的增大,整流接触逐渐减弱;对于带隙较宽的CZTSSe,加入2 nm的界面层使得CZTSSe/Mo(S,Se)2/Mo形成的整流接触增强,但随着界面层厚度的继续增大,整流接触减弱。当CZTSSe的带隙和电子亲和能较小时,CZTSSe/Mo(S,Se)2/Mo形成欧姆接触,控制界面层厚度为100 nm左右可以得到最优的电学接触特性。

关键词: CZTSSe, Mo(S,Se)2界面层, 背电极接触, I-V特性, AFORS-HET软件

Abstract: In order to analyze the back electrode contact characteristics of CZTSSe thin film solar cells, the CZTSSe/Mo(S,Se)2/Mo structure was simulated by AFORS-HET v2.5 software. The effects of the band gap Eg and the electron affinity of CZTSSe and the thickness and the band gap of Mo(S,Se)2 interface layer on the electrical contact characteristics between CZTSSe and Mo electrodes were investigated. The results show that the increases of the band gap and electron affinity of CZTSSe make the ohmic contact of CZTSSe/Mo(S,Se)2/Mo weaken and transform to the rectifying contact. For CZTSSe with a narrow band gap, the addition of the interface layer causes the ohmic contact formed by CZTSSe/Mo(S,Se)2/Mo to be converted into a rectifying contact. As the thickness of the interface layer increases, the rectifying contact weakens. For CZTSSe with a wide band gap, the addition of a 2 nm interface layer enhances the rectifying contact formed by CZTSSe/Mo(S,Se)2/Mo. As the thickness of the interface layer increases, the rectifying contact weakens. When the work function of CZTSSe is low, CZTSSe/Mo(S,Se)2/Mo forms an ohmic contact, and the optimal electrical contact characteristics can be obtained by controlling the thickness of the interface layer to about 100 nm.

Key words: CZTSSe, Mo(S, Se)2 interface layer, back electrode contact, I-V characteristics, AFORS-HET software

中图分类号: 

  • TN36
[1] TUAN D A, KE N H, LOAN P T K, et al. A method to improve crystal quality of CZTSSe absorber layer [J]. Journal of Sol-Gel Science and Technology, 2018, 87: 245-253
[2] 陈红丽. 铜锌锡硫硒薄膜的硒化工艺及其光学性能研究[D]. 开封: 河南大学, 2015: 1-10.
[3] WANG W, WINKLER M T, GUNAWAN O, et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency [J]. Advanced Energy Materials, 2014, 4(7): 1-5
[4] SCRAGG J J, WATJEN J T, EDOFF M, et al. A detrimental reaction at the molybdenum back contact in Cu2ZnSn(S,Se)4 thin-film solar cells [J]. Journal of the American Chemical Society, 2012, 134(47): 19330-19333
[5] SHIN B, BOJARCZUK N A, GUHA S. On the kinetics of MoSe2 interfacial layer formation in chalcogen-based thin film solar cells with a molybdenum back contact [J]. Applied Physics Letters, 2013, 102(091907): 1-4
[6] GOUTAM K D, SIARHEI Z, SAEID M P, et al. Impact of molybdenum out diffusion and interface quality on the performance of sputter grown CZTS based solar cells [J]. Scientific Reports, 2017, 7: 1350-1361
[7] COZZA D, RUIZ C M, DUCHE D, et al. Modeling the back contact of Cu2ZnSnSe4 solar cells [J]. IEEE Journal of Photovoltaics, 2016, 6(5): 1292-1297
[8] GHOSH R K, MAHAPATRA S. Monolayer transition metal dichalcogenide channel-based tunnel transistor [J]. IEEE Journal of the Electron Devices Society, 2013, 1(10): 175-180
[9] MINBASHI M, OMRANI M K, MEMARIAN N, et al. Comparison of theoretical and experimental results for band-gap-graded CZTSSe solar cell [J]. Current Applied Physics, 2017, 17: 1238-1243
[10] YIM C, O’BRIEN M, JAMES G, et al. Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry [J]. Applied Physics Letters, 2014, 104(103114): 1-5
[11] TONGAY S, ZHOU J, ATACA C, et al. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2 [J]. Nano Letters, 2012, 12(11): 5576-5580
[12] SIMYA O K, MAHABOOBBATCHA A, Balachande R K. A comparative study on the performance of kesterite based thin film solar cells using SCAPS simulation program [J]. Superlattices and Microstructures, 2015, 82: 248-261
[13] 许佳雄, 姚若河. n-ZnO:Al/i-ZnO/n-CdS/p-Cu2ZnSnS4太阳能电池光伏特性的分析[J]. 物理学报, 2012, 61(18): 451-458 XU J X, YAO R H. Analysis of Photovoltaic characteristics of n-ZnO: Al/i-ZnO/n-CdS/p-Cu2ZnSnS4 solar cells [J]. Acta Physica Sinica, 2012, 61(18): 451-458
[14] 张红, 程树英, 周海芳, 等. Cu2ZnSnS4/Zn(O,S)异质结薄膜太阳电池的数值仿真[J]. 福州大学学报(自然科学版), 2017, 45(3): 342-347 ZHANG H, CHENG S Y, ZHOU H F, et al. Numerical simulation of Cu2ZnSnS4/Zn(O,S) heterojunction thin film solar cells [J]. Journal of Fuzhou University (Natural Science Edition), 2017, 45(3): 342-347
[15] 刘恩科, 朱秉升, 罗晋生, 等. 半导体物理学[M]. 北京: 国防工业出版社, 2013: 196-198.
[16] HIRONIWA D, MURATA M, ASHIDA N, et al. Simulation of optimum band-gap grading profile of Cu2ZnSn(S,Se)4 solar cells with different optical and defect properties [J]. Japanese Journal of Applied Physics, 2014, 53: 1-9
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!