广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (03): 106-113.doi: 10.12052/gdutxb.190104
庄楚楠, 许佳雄, 林俊辉
Zhuang Chu-nan, Xu Jia-xiong, Lin Jun-hui
摘要: 为分析CZTSSe薄膜太阳能电池的背电极接触特性,采用AFORS-HET(Automat for Simulation of HETerostructures) v2.5软件对CZTSSe/Mo(S,Se)2/Mo结构进行数值分析,研究CZTSSe的带隙和电子亲和能、Mo(S,Se)2界面层的厚度以及带隙对CZTSSe与Mo电极的电学接触特性的影响。结果表明CZTSSe的带隙和电子亲和能的增大,使得CZTSSe/Mo(S,Se)2/Mo的欧姆接触减弱并向整流接触转变;对于带隙较窄的CZTSSe,加入界面层使CZTSSe/Mo(S,Se)2/Mo形成的欧姆接触转变为整流接触,随着界面层厚度的增大,整流接触逐渐减弱;对于带隙较宽的CZTSSe,加入2 nm的界面层使得CZTSSe/Mo(S,Se)2/Mo形成的整流接触增强,但随着界面层厚度的继续增大,整流接触减弱。当CZTSSe的带隙和电子亲和能较小时,CZTSSe/Mo(S,Se)2/Mo形成欧姆接触,控制界面层厚度为100 nm左右可以得到最优的电学接触特性。
中图分类号:
[1] TUAN D A, KE N H, LOAN P T K, et al. A method to improve crystal quality of CZTSSe absorber layer [J]. Journal of Sol-Gel Science and Technology, 2018, 87: 245-253 [2] 陈红丽. 铜锌锡硫硒薄膜的硒化工艺及其光学性能研究[D]. 开封: 河南大学, 2015: 1-10. [3] WANG W, WINKLER M T, GUNAWAN O, et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency [J]. Advanced Energy Materials, 2014, 4(7): 1-5 [4] SCRAGG J J, WATJEN J T, EDOFF M, et al. A detrimental reaction at the molybdenum back contact in Cu2ZnSn(S,Se)4 thin-film solar cells [J]. Journal of the American Chemical Society, 2012, 134(47): 19330-19333 [5] SHIN B, BOJARCZUK N A, GUHA S. On the kinetics of MoSe2 interfacial layer formation in chalcogen-based thin film solar cells with a molybdenum back contact [J]. Applied Physics Letters, 2013, 102(091907): 1-4 [6] GOUTAM K D, SIARHEI Z, SAEID M P, et al. Impact of molybdenum out diffusion and interface quality on the performance of sputter grown CZTS based solar cells [J]. Scientific Reports, 2017, 7: 1350-1361 [7] COZZA D, RUIZ C M, DUCHE D, et al. Modeling the back contact of Cu2ZnSnSe4 solar cells [J]. IEEE Journal of Photovoltaics, 2016, 6(5): 1292-1297 [8] GHOSH R K, MAHAPATRA S. Monolayer transition metal dichalcogenide channel-based tunnel transistor [J]. IEEE Journal of the Electron Devices Society, 2013, 1(10): 175-180 [9] MINBASHI M, OMRANI M K, MEMARIAN N, et al. Comparison of theoretical and experimental results for band-gap-graded CZTSSe solar cell [J]. Current Applied Physics, 2017, 17: 1238-1243 [10] YIM C, O’BRIEN M, JAMES G, et al. Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry [J]. Applied Physics Letters, 2014, 104(103114): 1-5 [11] TONGAY S, ZHOU J, ATACA C, et al. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2 [J]. Nano Letters, 2012, 12(11): 5576-5580 [12] SIMYA O K, MAHABOOBBATCHA A, Balachande R K. A comparative study on the performance of kesterite based thin film solar cells using SCAPS simulation program [J]. Superlattices and Microstructures, 2015, 82: 248-261 [13] 许佳雄, 姚若河. n-ZnO:Al/i-ZnO/n-CdS/p-Cu2ZnSnS4太阳能电池光伏特性的分析[J]. 物理学报, 2012, 61(18): 451-458 XU J X, YAO R H. Analysis of Photovoltaic characteristics of n-ZnO: Al/i-ZnO/n-CdS/p-Cu2ZnSnS4 solar cells [J]. Acta Physica Sinica, 2012, 61(18): 451-458 [14] 张红, 程树英, 周海芳, 等. Cu2ZnSnS4/Zn(O,S)异质结薄膜太阳电池的数值仿真[J]. 福州大学学报(自然科学版), 2017, 45(3): 342-347 ZHANG H, CHENG S Y, ZHOU H F, et al. Numerical simulation of Cu2ZnSnS4/Zn(O,S) heterojunction thin film solar cells [J]. Journal of Fuzhou University (Natural Science Edition), 2017, 45(3): 342-347 [15] 刘恩科, 朱秉升, 罗晋生, 等. 半导体物理学[M]. 北京: 国防工业出版社, 2013: 196-198. [16] HIRONIWA D, MURATA M, ASHIDA N, et al. Simulation of optimum band-gap grading profile of Cu2ZnSn(S,Se)4 solar cells with different optical and defect properties [J]. Japanese Journal of Applied Physics, 2014, 53: 1-9 |
No related articles found! |
|