广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (06): 71-77.doi: 10.12052/gdutxb.200014

• • 上一篇    下一篇

水平光滑管内R245fa轴向均匀沸腾传热特性实验研究

涂俊平, 黄计康, 罗向龙, 陈健勇, 杨智, 梁颖宗, 陈颖   

  1. 广东工业大学 材料与能源学院,广东 广州 510006
  • 收稿日期:2020-01-31 出版日期:2020-11-02 发布日期:2020-11-02
  • 通信作者: 罗向龙(1978-),男,教授,主要研究方向为热力系统集成和优化、传热强化与优化等,E-mail:lxl-det@gdut.edu.cn E-mail:lxl-det@gdut.edu.cn
  • 作者简介:涂俊平(1989-),男,硕士研究生,主要研究方向为有机工质管内两相流动沸腾传热基础理论研究
  • 基金资助:
    国家自然科学基金资助面上项目(51876043);国家自然科学基金资助重点项目(51736005)

An Experimental Study of Axial Uniform Boiling Heat Transfer Characteristics of R245fa in Horizontal Smooth Tube

Tu Jun-ping, Huang Ji-kang, Luo Xiang-long, Chen Jian-yong, Yang Zhi, Liang Ying-zong, Chen Ying   

  1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2020-01-31 Online:2020-11-02 Published:2020-11-02

摘要: R245fa是有机朗肯循环系统(Organic Rankine Cycle,ORC)最常用的工质之一,研究其传热流动特性对于指导R245fa的ORC设计和运行有重要价值。搭建了有机工质单管传热流动测试台并开展了水平光滑管内R245fa在90℃下的沸腾传热实验研究。实验获得了平均干度、质量流率对平均流动沸腾传热系数和壁温沿管程分布的影响规律,并分析了原因。将实验结果与3个经典传热关联式预测结果进行了对比,结果显示平均偏差分别为38%、39%、20%。R245fa高温蒸发实验结果可为进一步修正传热关联式提供基础数据库,并用于指导热力循环工程实践。

关键词: 有机朗肯循环, 沸腾传热, 传热关联式, 有机工质

Abstract: R245fa is one of the most commonly working fluids used in organic Rankine cycle (ORC) system. Investigating its heat transfer flow characteristics is of great importance in guiding the design and operation of ORC system. An experimental test rig is established for the test of the in-tube heat transfer and flowing of the organic working fluids. The experimental research for the boiling heat transfer of R245fa in a horizontally smooth tube is conducted. Firstly, the influence of mean quality and mass velocity on the average flow boiling heat transfer coefficient and wall temperature distribution along the tube are obtained and analyzed; then, experimental results are compared with three classical heat transfer correlations prediction results, with an average deviation of 38%, 39%, and 20%. The high temperature evaporation experimental results provide a basic database for the correction of heat transfer correlation and guidance for the engineering design practices.

Key words: organic Rankine cycle, boiling heat transfer, heat transfer correlation, organic working fluids

中图分类号: 

  • TQ021.3
[1] KUNDU A, KUMAR R, GUPTA A. Heat transfer characteristics and flow pattern during two-phase flow boiling of R134a and R407C in a horizontal smooth tube [J]. Experimental Thermal and Fluid Science, 2014, 57: 344-352.
[2] ZHANG J, MARIA M E and HAGLIND F. General heat transfer correlations for flow boiling of zeotropic mixtures in horizontal plain tubes [J]. Applied Thermal Engineering, 2019, 150: 824-839.
[3] ZHANG Y, TIAN R, DAI X Y, et al. Experimental study of R134a flow boiling in a horizontal tube for evaporator design under typical organic Rankine cycle pressures [J]. International Journal of Heat and Fluid Flow, 2018, 71: 210-219.
[4] LI L, GE Y T, LUO X, et al. Experimental analysis and comparison between CO2 transcritical power cycles and R245fa organic Rankine cycles for low-grade heat power generations [J]. Applied Thermal Engineering, 2018, 136: 708-717.
[5] GUO C, WANG J, DU X, et al. Experimental flow boiling characteristics of R134a/R245fa mixture inside smooth horizontal tube [J]. Applied Thermal Engineering, 2016, 103: 901-908.
[6] LIU Z, WINTERTON R H S. A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation [J]. International Journal of Heat and Mass Transfer, 1991, 34(11): 2759-2766.
[7] ABADI G B, MOON C, KIM K C. Effect of gravity vector on flow boiling heat transfer, flow pattern map, and pressure drop of R245fa refrigerant in mini tubes [J]. International Journal of Multiphase Flow, 2016, 83: 202-216.
[8] TIBIRICA C B, RIBATSKI G. Flow boiling heat transfer of R134a and R245fa in a 2.3 mm tube [J]. International Journal of Heat and Mass Transfer, 2010, 53(11-12): 2459-2468.
[9] SAITOH S, DAIGUJI H, HIHARA E. Correlation for boiling heat transfer of R134a in horizontal tubes including effect of tube diameter [J]. International Journal of Heat and Mass Transfer, 2007, 50(25-26): 5215-5225.
[10] ZHANG L, HIHARA E, SAITO T, et al. Boiling heat transfer of a ternary refrigerant mixture inside a horizontal smooth tube [J]. International Journal of Heat and Mass Transfer, 1997, 40(9): 2009-2017.
[11] TIBIRICA C B, RIBATSKI G. Two-phase frictional pressure drop and flow boiling heat transfer for R245fa in a 2.32-mm tube [J]. Heat Transfer Engineering, 2011, 32(13-14): 1139-1149.
[12] DANG C, JIA L, PENG Q, et al. Experimental and analytical study on nucleate pool boiling heat transfer of R134a/R245fa zeotropic mixtures [J]. International Journal of Heat and Mass Transfer, 2018, 119: 508-522.
[13] XU Y, FANG X D, LI G H, et al. An experimental study of flow boiling heat transfer of R134a and evaluation of existing correlations [J]. International Journal of Heat and Mass Transfer, 2016, 92: 1143-1157.
[14] DORAO C A, BLANCOFERNANDEZ O, FERNANDINO M. Experimental study of horizontal flow boiling heat transfer of R134a at a saturation temperature of 18.6 ℃ [J]. Journal of Heat Transfer, 2017, 139(11): 111510.
[15] HOSSAIN M A, ONAKA Y, MIYARA A. Experimental study on condensation heat transfer and pressure drop in horizontal smooth tube for R1234ze (E), R32 and R410A [J]. International Journal of Refrigeration, 2012, 35(4): 1143-1157.
[16] LILLO G, MASTRULLO R, MAURO A W, et al. Flow boiling of R32 in a horizontal stainless steel tube with 6.00 mm ID. Experiments, assessment of correlations and comparison with refrigerant R410A [J]. International Journal of Refrigeration, 2019, 97: 143-156.
[17] LONGO G A, MANCIN S, RIGHETTI G, et al. HFC32 and HFC410A flow boiling inside a 4 mm horizontal smooth tube [J]. International Journal of Refrigeration, 2015, 61: 12-22.
[18] CHEN J C. Correlation for boiling heat transfer to saturated fluids in convective flow [J]. Industrial & Engineering Chemistry Process Design and Development, 1966, 5(3): 322-329.
[19] YOSHIDA S, MORI H, HONG H, et al. Prediction of heat transfer coefficient for refrigerants flowing in horizontal evaporator tubes [J]. Transcripts of the Japanese Association of Refrigeration, 1994, 11(1): 67-78.
[1] 危由兴, 罗向龙, 胡凌锋, 陈健勇, 梁颖宗, 杨智, 陈颖. 基于时间序列聚合的有机朗肯循环系统优化方法[J]. 广东工业大学学报, 2022, 39(06): 98-106.
[2] 罗俊伟, 罗向龙, 郑晓生, 陈健勇, 梁颖宗, 杨智, 陈颖. 有机朗肯循环系统换热设备仿真研究[J]. 广东工业大学学报, 2022, 39(04): 128-134.
[3] 梁俊伟, 罗向龙, 杨智, 梁颖宗, 陈健勇, 陈颖. 基于PC-SAFT的混合工质筛选与有机朗肯循环系统优化[J]. 广东工业大学学报, 2022, 39(02): 91-98.
[4] 郑晓生, 罗俊伟, 卢沛, 罗向龙, 陈健勇, 杨智, 梁颖宗, 陈颖. 采用R1234ze(E)/R245fa的非共沸混合工质有机朗肯循环系统实验研究[J]. 广东工业大学学报, 2020, 37(03): 114-120.
[5] 王羽鹏, 罗向龙, 梁俊伟, 陈健勇, 杨智, 陈颖. 有机朗肯循环系统工质设计与系统参数的同步优化[J]. 广东工业大学学报, 2020, 37(01): 69-80.
[6] 邱观福, 罗向龙, 陈健勇, 杨智, 陈颖. 考虑环境温度变工况的分液冷凝有机朗肯循环系统优化设计[J]. 广东工业大学学报, 2019, 36(06): 99-104,110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!