广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (04): 128-134.doi: 10.12052/gdutxb.200167

• • 上一篇    

有机朗肯循环系统换热设备仿真研究

罗俊伟, 罗向龙, 郑晓生, 陈健勇, 梁颖宗, 杨智, 陈颖   

  1. 广东工业大学 材料与能源学院, 广东 广州 510006
  • 收稿日期:2020-12-16 出版日期:2022-07-10 发布日期:2022-06-29
  • 通信作者: 罗向龙(1978–),男,教授,博士,主要研究方向为热力系统集成与优化、换热强化与优化等,E-mail:lxl-dte@gdut.edu.cn
  • 作者简介:罗俊伟(1995–),男,硕士研究生,主要研究方向为换热设备、有机朗肯循环系统实验
  • 基金资助:
    国家自然科学基金资助重点项目(51876043)

A Simulation Study on Heat Exchanger of Organic Rankine Cycle

Luo Jun-wei, Luo Xiang-long, Zheng Xiao-sheng, Chen Jian-yong, Liang Ying-zong, Yang Zhi, Chen Ying   

  1. School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2020-12-16 Online:2022-07-10 Published:2022-06-29

摘要: 有机朗肯循环(Organic Rankine Cycle,ORC)在中低温热能发电方向具有广阔的应用前景。换热器是ORC的重要部件,然而当前对于换热器偏离设计工况运行性能的研究尚不够深入。本文提出了偏离设计工况运行条件下换热器分区仿真建模方法,建立了换热器仿真模型并通过实验验证。经验证,蒸发器和冷凝器仿真与实验的换热量最大误差分别为3.74%和3.20%。在模型验证基础上,对ORC中换热器偏离设计工况运行特性进行了分析,获得了换热器偏离设计工况运行特性和换热面积迁移规律,定义并获得了换热器当量换热系数,为ORC中换热器设计及系统运行提供了指导。

关键词: 有机朗肯循环, 换热设备, 仿真, 实验

Abstract: Organic Rankine Cycle have numerous potential applications in thermal power generation at medium-to-low temperatures. Heat exchanger is an important part of ORC, but the research on the off-design conditions performance of the heat exchanger is not enough. A simulation modeling approach of the heat exchanger under off-design conditions is proposed in this paper and the simulation model of the heat exchanger is established and verified by experiments. According to the verification, the maximum error of heat transfer quantity between simulation and experiment of evaporator and condenser is 3.74% and 3.20% respectively. On the basis of the model validation, the performance of the heat exchanger in ORC are evaluated, the off-design conditions performance and the thermal transfer area migration regulations of the heat exchanger are obtained, and the equivalent heat transfer coefficient of the heat exchanger is defined and obtained, which provides guidelines for the design of the heat exchanger and the application of the device in ORC.

Key words: Organic Rankine Cycle, heat exchanger, simulation, experiment

中图分类号: 

  • TK151
[1] 涂俊平, 黄计康, 罗向龙, 等. 水平光滑管内R245fa轴向均匀沸腾传热特性实验研究[J]. 广东工业大学学报, 2020, 37(6): 71-77.
TU J P, HUANG J K, LUO X L, et al. An experimental study of axial uniform boiling heat transfer characteristics of r245fa in horizontal smooth tube [J]. Journal of Guangdong University of Technology, 2020, 37(6): 71-77.
[2] CAMPANA F, BIANCHI M, BRANCHINI L, et al. ORC waste heat recovery in European energy intensive industries: energy and GHG savings[J]. Energy Conversion and Management, 2013, 76: 244-252
[3] 邱观福, 罗向龙, 陈健勇, 等. 考虑环境温度变工况的分液冷凝有机朗肯循环系统优化设计[J]. 广东工业大学学报, 2019, 36(6): 99-104.
QIU G F, LUO X L, CHEN J Y, et al. An off-design optimization of liquid separation condenser-based Organic Rankine Cycle under different ambient temperature [J]. Journal of Guangdong University of Technology, 2019, 36(6): 99-104.
[4] PARK B-S, USMAN M, IMRAN M, et al. Review of Organic Rankine Cycle experimental data trends[J]. Energy Conversion and Management, 2018, 173: 679-691
[5] CHEN Q C, XU J L, CHEN H X. A new design method for Organic Rankine Cycles with constraint of inlet and outlet heat carrier fluid temperatures coupling with the heat source[J]. Applied Energy, 2012, 98: 562-573
[6] CHEN J Y, ZHENG X S, GUO G Q, et al. A flexible and multi-functional organic Rankine cycle system: preliminary experimental study and advanced exergy analysis[J]. Energy Conversion and Management, 2019, 187: 339-355
[7] LECOMPTE S, HUISSEUNE H, VAN DEN BROEK M, et al. Part load based thermo-economic optimization of the Organic Rankine Cycle (ORC) applied to a combined heat and power (CHP) system[J]. Applied Energy, 2013, 111: 871-881
[8] WALRAVEN D, LAENEN B, D’HAESELEER W. Economic system optimization of air-cooled organic Rankine cycles powered by low-temperature geothermal heat sources[J]. Energy, 2015, 80: 104-113
[9] ZHANG C, LIU C, WANG S K, et al. Thermo-economic comparison of subcritical organic Rankine cycle based on different heat exchanger configurations[J]. Energy, 2017, 123: 728-741
[10] GÓMEZ ALÁEZ S L, BOMBARDA P, INVERNIZZI C M, et al. Evaluation of ORC modules performance adopting commercial plastic heat exchangers[J]. Applied Energy, 2015, 154: 882-890
[11] JAFARI A, YANG C Y, CHANG C C. Optimization of heat exchanger size of a 10 kW organic Rankine Cycle system[J]. Energy Procedia, 2017, 129: 851-858
[12] LEE Y R, KUO C R, LIU C H, et al. Response of a 50 kW organic Rankine Cycle system subject to influence of evaporators[J]. International Conference on Applied Energy, ICAE2014, 2014, 61: 635-638
[13] 朱康达, 陈颖, 陈健勇, 等. 分液板式冷凝器的热力性能评价[J]. 广东工业大学学报, 2019, 36(5): 48-55.
ZHU K D, CEHN Y, CHEN J Y, et al. Thermodynamic performance evaluation of liquid-vapor separation plate condenser [J]. Journal of Guangdong University of Technology, 2019, 36(5): 48-55.
[14] 梁志颖, 陈健勇, 陈颖, 等. 多流程分液板式冷凝器的变工况性能研究[J]. 广东工业大学学报, 2022, 39(1): 99-106.
LIANG Z Y, CHEN J Y, CHEN Y, et al. A study of the variable performance of multi-path liquid-vapor separation plate condenser [J]. Journal of Guangdong University of Technology, 2022, 39(1): 99-106.
[15] GARCÍA-CASCALES J R, VERA-GARCÍA F, CORBERÁN-SALVADOR J M, et al. Assessment of boiling and condensation heat transfer correlations in the modelling of plate heat exchangers [J]. International Journal of Refrigeration, 2007, 30(6): 1029-1041.
[16] AMALFI R L, VAKILI-FARAHANI F, THOME J R. Flow boiling and frictional pressure gradients in plate heat exchangers. Part 1: review and experimental database[J]. International Journal of Refrigeration, 2016, 61: 166-184
[17] AYUB Z H. Plate heat exchanger literature survey and new heat transfer and pressure drop correlations for refrigerant evaporators [J]. Heat Transfer Engineering, 2003, 24(5): 3-16.
[18] DESIDERI A, ZHANG J, KÆRN M R, et al. An experimental analysis of flow boiling and pressure drop in a brazed plate heat exchanger for organic Rankine Cycle power systems[J]. International Journal of Heat and Mass Transfer, 2017, 113: 6-21
[19] LONGO G A, RIGHETTI G, ZILIO C. A new computational procedure for refrigerant condensation inside herringbone-type Brazed Plate Heat Exchangers[J]. International Journal of Heat and Mass Transfer, 2015, 82: 530-536
[20] 郑晓生, 罗俊伟, 卢沛, 等. 采用R1234ze(E)/R245fa的非共沸混合工质有机朗肯循环系统实验研究[J]. 广东工业大学学报, 2020, 37(3): 114-120.
ZHENG X S, LUO J W, LU P, et al. An experimental study of zeotropic-mixture organic rankine cycle system utilizing r1234ze (e)/r245fa [J]. Journal of Guangdong University of Technology, 2020, 37(3): 114-120.
[21] ZHENG X S, LUO X L, LUO J W, et al. Experimental investigation of operation behavior of plate heat exchangers and their influences on organic Rankine Cycle performance[J]. Energy Conversion and Management, 2020, 207: 112528
[1] 董振宁, 王俊杰, 罗克文, 陈浪城. 网约车乘客隐私保护的演化博弈研究[J]. 广东工业大学学报, 2023, 40(01): 19-28.
[2] 刘效洲, 朱睿, 朱光羽. 天然气掺氢燃烧技术在旋流式燃气灶上的数值模拟研究[J]. 广东工业大学学报, 2023, 40(01): 113-121.
[3] 危由兴, 罗向龙, 胡凌锋, 陈健勇, 梁颖宗, 杨智, 陈颖. 基于时间序列聚合的有机朗肯循环系统优化方法[J]. 广东工业大学学报, 2022, 39(06): 98-106.
[4] 周林娜, 金南南, 王海, 杨春雨. 双永磁同步电机滑模协调控制及实验研究[J]. 广东工业大学学报, 2022, 39(05): 83-92.
[5] 刘效洲, 朱光羽. 循环流化床锅炉风室内流动特性及优化研究[J]. 广东工业大学学报, 2022, 39(03): 116-124.
[6] 吴锡鸿, 叶国华, 黄润业, 张国庆, 杨晓青, 李新喜. 新型管状相变材料热管理系统的数值仿真与实验研究[J]. 广东工业大学学报, 2022, 39(03): 133-138.
[7] 梁俊伟, 罗向龙, 杨智, 梁颖宗, 陈健勇, 陈颖. 基于PC-SAFT的混合工质筛选与有机朗肯循环系统优化[J]. 广东工业大学学报, 2022, 39(02): 91-98.
[8] 涂俊平, 黄计康, 罗向龙, 陈健勇, 杨智, 梁颖宗, 陈颖. 水平光滑管内R245fa轴向均匀沸腾传热特性实验研究[J]. 广东工业大学学报, 2020, 37(06): 71-77.
[9] 李晋芳, 韦光扬, 何汉武, 蔡嘉鸿, 陈基荣. 一种基于质点弹簧模型的牙龈软组织形变仿真算法[J]. 广东工业大学学报, 2020, 37(03): 49-54.
[10] 赵泽兴, 石智伟, 左茂武. 基于Matlab GUI仿真多光束干涉形成光子晶格[J]. 广东工业大学学报, 2020, 37(03): 63-69.
[11] 郑晓生, 罗俊伟, 卢沛, 罗向龙, 陈健勇, 杨智, 梁颖宗, 陈颖. 采用R1234ze(E)/R245fa的非共沸混合工质有机朗肯循环系统实验研究[J]. 广东工业大学学报, 2020, 37(03): 114-120.
[12] 王晓锋, 何小琦, 尧彬. PBGA封装回流焊翘曲变形仿真与验证[J]. 广东工业大学学报, 2020, 37(02): 94-101.
[13] 陈建润, 刘丽孺, 黄家豪, 刘琳, 黄志荣. 湿热地区实验室分功能的新风-补风系统的空调能耗分析[J]. 广东工业大学学报, 2020, 37(01): 65-68.
[14] 王羽鹏, 罗向龙, 梁俊伟, 陈健勇, 杨智, 陈颖. 有机朗肯循环系统工质设计与系统参数的同步优化[J]. 广东工业大学学报, 2020, 37(01): 69-80.
[15] 陈子豪, 罗钰颖, 谢政, 李佳娜. 基于眼动实验的骑行服上衣色彩搭配[J]. 广东工业大学学报, 2019, 36(06): 24-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!