广东工业大学学报 ›› 2021, Vol. 38 ›› Issue (03): 97-103.doi: 10.12052/gdutxb.200070

• • 上一篇    下一篇

石灰改良黄土渗透性与孔隙结构的关系研究

张雪娇, 刘攀, 杨雪强, 汪洋   

  1. 广东工业大学 土木与交通工程学院,广东 广州 510006
  • 收稿日期:2020-05-15 出版日期:2021-05-10 发布日期:2021-03-31
  • 通信作者: 杨雪强(1966-),男,教授,博士,主要研究方向为土体本构关系及边坡稳定等,E-mail:xqyfls@126.com E-mail:xqyfls@126.com
  • 作者简介:张雪娇(1994-)女,硕士研究生,主要研究方向为特殊土工程性质
  • 基金资助:
    国家自然科学基金青年基金资助项目(51809050)

A Study of the Relationship Between Permeability and Pore Structure of Lime-treated Loess

Zhang Xue-jiao, Liu Pan, Yang Xue-qiang, Wang Yang   

  1. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2020-05-15 Online:2021-05-10 Published:2021-03-31

摘要: 土是一种具有多孔介质的岩土工程材料, 其微观孔隙结构决定着宏观渗透性。为了研究渗透特性与孔隙结构之间的依存关系, 以石灰改良黄土为研究对象, 首先对不同石灰掺量下的改良黄土进行室内变水头渗透试验, 随后选取有代表性土样进行扫描电镜(SEM)试验, 并利用Image-Pro Plus 6.0(IPP)图像处理软件统计不同石灰掺量下改良黄土的微观孔隙结构参数, 结合室内渗透试验结果建立宏观渗透特性与微观孔隙结构之间的联系。结果表明: 随着石灰掺量的增加, 充填于大中孔隙的结晶胶结物不断增多, 对应微观图像中大中孔隙的数量、面积、面孔隙度及大孔的平均直径逐渐减小, 而微小孔隙的数量、面积及孔隙的分形维数呈上升趋势, 孔隙结构趋向复杂化, 使得有效渗流通道占比减小, 从而降低了土体渗透性, 说明微观孔隙结构参数与宏观物理性质存在密切联系, 在一定程度上可以反映宏观物理性质的变化。

关键词: 微观孔隙结构, 渗透特性, 石灰改良黄土, 有效渗流通道, 依存关系

Abstract: Soil is a kind of geotechnical engineering material with porous media, and the microscopic pore structure determines macroscopic permeability. To investigate the responsibility between permeability characteristics and pore structure, the falling-head permeability tests at various lime contents are carried on lime-treated loess firstly, and then the Scanning Electron Microscope (SEM) is conducted on some typical specimens which use the Image Pro Plus 6.0 (IPP) Image processing software to count the microscopic pore structure parameters of the improved loess at various lime contents, and, by combining the results of the laboratory permeability test, establish the connection between the macroscopic permeability characteristics and the microscopic pore structure. The results show that with the increase of the lime contents, the crystalline cement filling the large and medium pores is increasing, corresponding to the number, area, surface porosity of the large and medium pores and average diameter of the large pores in the microscopic image are gradually reduced, but the number and area of small and micro pores and the fractal dimension of pores are on the rise, and the pore structure tends to be complicated, which reduces the proportion of effective seepage channels. Therefore the permeability of the soil is reducing. It is indicated that microscopic pore structure parameters are closely related to macroscopic physical properties, which can reflect changes in macroscopic physical properties to a certain extent.

Key words: microscopic pore structure, permeability, lime-treated loess, effective seepage channels, responsibility relationship

中图分类号: 

  • U419.4
[1] 杨波, 李熠, 周伟, 等. 饱和黄土渗透过程变形与渗透系数关系初探[J]. 广西大学学报, 2015, 40(2): 325-330.
YANG B, LI Y, ZHOU W, et al. Experimental studies on relationship between deformation and hydraulic permeability of loess in process of penetration [J]. Journal of Guangxi University, 2015, 40(2): 325-330.
[2] 杨博, 张虎元, 赵天宇, 等. 改性黄土渗透性与孔隙结构的依存关系[J]. 水文地质工程地质, 2011, 38(6): 96-101.
YANG B, ZHANG H Y, ZHAO T Y, et al. Responsibility of permeability of modified loess soil on microstructure [J]. Hydrogeology & Engineering Geology, 2011, 38(6): 96-101.
[3] 洪勃, 李喜安, 王力, 等. 毛细管渗流模型在黄土渗透性中的应用探讨[J]. 工程地质学报, 2018, 26(5): 141-147.
HONG B, LI X A, WANG L, et al. Discussion on applicability of capillary seepage models to loess permeability [J]. Journal of Engineering Geology, 2018, 26(5): 141-147.
[4] CHAPUIS R P. The 2000 R. M. Hardy Lecture: full-scale hydraulic performance of soil-bentonite and compacted clay liners [J]. Canadian Geotechnical Journal, 2002, 39(2): 417-439.
[5] 李云峰. 黄土渗透性与空隙性关系的研究[M]. 北京: 地质出版社, 1994.
[6] TAYLOR D W. Fundamentals of soil mechanics [J]. Soil Science, 1948, 66(2): 161.
[7] MBONIMPA M, AUBERTIN M, CHAPUIS R P, et al. Practical pedotransfer functions for estimating the saturated hydraulic conductivity [J]. Geotechnical and Geological Engineering, 2002, 20(3): 235-259.
[8] 曾玲玲, 洪振舜, 陈福全. 压缩过程中重塑黏土渗透系数的变化规律[J]. 岩土力学, 2012, 33(5): 1286-1292.
ZENG L L, HONG Z S, CHEN F Q. A law of change in permeability coefficient during compression of remolded clays [J]. Rock and Soil Mechanics, 2012, 33(5): 1286-1292.
[9] 陈宗先, 何翔, 熊云山, 等. 不同密实度下黏性土的渗透性分析[J]. 武汉轻工大学学报, 2016, 35(2): 67-71.
CHEN Z X, HE X, XIONG Y S, et al. Cohesive soils’s permeability analysis under different compactness [J]. Journal of Wuhan Polytechnic University, 2016, 35(2): 67-71.
[10] 洪勃, 李喜安, 陈广东, 等. 重塑马兰黄土渗透性试验研究[J]. 工程地质学报, 2016, 24(2): 276-283.
HONG B, LI X A, CHEN G D, et al. Experimental study of permeability of remolded Malan Loess [J]. Journal of Engineering Geology, 2016, 24(2): 276-283.
[11] 高燕燕, 钱会, 杨佳, 等. 重塑马兰黄土渗透性的室内试验研究[J]. 南水北调与水利科技, 2016, 14(5): 130-136.
GAO Y Y, QIAN H, YANG J, et al. Indoor experimental study on permeability characteristics of remolded Malan Loess [J]. South-to-North Water Transfers and Water Science & Technology, 2016, 14(5): 130-136.
[12] SAXENA N, MAVKO G, HOFMANN R, et al. Estimating permeability from thin sections without reconstruction: digital rock study of 3D properties from 2D images [J]. Computers & Geosciences, 2017, 102(5): 79-99.
[13] 李林翠, 李喜安, 洪勃, 等. 不同埋深马兰黄土孔隙结构试验[J]. 吉林大学学报(地球科学版), 2019, 49(2): 493-503.
LI L C, LI X A, HONG B, et al. Experiment on pore structures of Malan loess at different buried depth [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(2): 493-503.
[14] XIE X, LI P, HOU X K, et al. Microstructure of compacted loess and its influence on the soil-water characteristic curve [J]. Advances in Materials Science and Engineering, 2020, 2020(5): 1-12.
[15] WANG J D, LI P, MA Y, et al. Change in pore-size distribution of collapsible loess due to loading and inundating [J]. Acta Geotechnica, 2020(15): 1081-1094.
[16] 戚明辉, 李君军, 曹茜. 基于扫描电镜和JMicroVision图像分析软件的泥页岩孔隙结构表征研究[J]. 岩矿测试, 2019, 38(3): 260-269.
QI M H, LI J J, CAO Q. The pore structure characterization of shale based on scanning electron Microscopy and JMicroVision [J]. Rock and Mineral Analysis, 2019, 38(3): 260-269.
[17] 刘勇健, 伍建胜, 谢治堃. 基于NMR和SEM的软土微观结构特征试验研究[J]. 广东工业大学学报, 2018, 35(6): 49-56.
LIU Y J, WU J S, XIE Z K. Experiment study on microstructure of soft soil in Nansha district based on NMR and SEM test [J]. Journal of Guangdong University of Technology, 2018, 35(6): 49-56.
[18] 周晖, 吴俊桦. 软土固结过程中基于分形理论的孔隙微观参数研究[J]. 广东工业大学学报, 2017, 34(4): 41-46.
ZHOU H, WU J H. A research on microscopic parameters of soft soil pore based on fractal theory in the process of consolidation [J]. Journal of Guangdong University of Technology, 2017, 34(4): 41-46.
[19] DI SANTE M, FRATAALOCCHI E, MAZZIERI F, et al. Influence of delayed compaction on the compressibility and hydraulic conductivity of soil-lime mixtures [J]. Engineering Geology, 2015, 185: 131-138.
[20] 王勇, 曹丽文, 温文富, 等. 生活垃圾污染粘土的微观结构与渗透特性[J]. 水文地质工程地质, 2014, 041(2): 138-142.
WANG Y, CAO L W, WEN W F, et al. Microstructure and permeability of domestic waste contaminated clays [J]. Hydrogeology & Engineering Geology, 2014, 041(2): 138-142.
[21] 李喜安, 刘锦阳, 郭泽泽, 等. 马兰黄土孔隙结构参数与渗透性关系研究[J]. 工程地质学报, 2018, 26(6): 10-18.
LI X A, LIU J Y, GUO Z Z, et al. Study on relationship between pore structure parameters and permeability of Malan Loess [J]. Journal of Engineering Geology, 2018, 26(6): 10-18.
[22] 南京水利科学研究院. SL237-1999 土工试验规程[S]. 北京: 中国水利水电出版社, 1999.
[23] BENSON C H, DANIEL D E. Minimum thickness of compacted soil liners: I. stochastic models [J]. Journal of Geotechnical Engineering, 1994, 120(1): 129-152.
[24] 雷祥义. 中国黄土的孔隙类型与湿陷性[J]. 中国科学化学: 中国科学, 1987, 17(12): 1309-1318.
LEI X Y. The Porosity types and collapsibility of loess in China [J]. Science in China: Series B, 1987, 17(12): 1309-1318.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!