广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (02): 72-75.doi: 10.12052/gdutxb.210017

• 综合研究 • 上一篇    下一篇

几类广义Pexider方程的解

肖志涛   

  1. 广州华立学院, 广东 广州 511325
  • 收稿日期:2021-01-28 出版日期:2022-03-10 发布日期:2022-04-02
  • 作者简介:肖志涛(1978–),男,讲师,硕士,主要研究方向为偏微分方程,E-mail:xiaozhitao418@163.cm
  • 基金资助:
    广东省高等教育教学改革资助项目(2016236);广东教育教学成果奖(高等教育)培育资助项目(2014172);广东工业大学华立学院2018年校级科研资助项目(HLKY-2018-ZK-08)

Solutions of Some Generalized Pexider Equations

Xiao Zhi-tao   

  1. Guangzhou Huali College, Guangzhou 511325, China
  • Received:2021-01-28 Online:2022-03-10 Published:2022-04-02

摘要: 讨论了Pexider可加函数方程、Pexider指数函数方程、Pexider对数函数方程、Pexider幂函数方程的一般形式,给出了这些方程的通解。

关键词: Pexider方程, 可加函数方程, 指数函数方程, 对数函数方程, 幂函数方程

Abstract: The general forms of pexider additive function equation, pexider exponential function equation, pexider logarithmic function equation and pexider power function equation are discussed, and the general solutions of these equations are given.

Key words: pexider equation, additive function equation, exponential function equation, logarithmic function equation, power function equation

中图分类号: 

  • O175
[1] PEXIDER J V. Notizuber funktionltheoreme[J]. Monatsh Math Phy, 1903, 14: 293-301.
[2] RADO F, BAKER J A. Pexider’s equation and aggregation of allocations[J]. Aequationes Mathematicae, 1987, 32: 227-239.
[3] NG C T. A Pexider-Jensen equation on groups [J]. Aequationes Math, 2005, 70(1/2): 131-153.
[4] ACZEL J, SKOF F. Local Pexider and cauchy equations [J]. Aequationes Math, 2007, 73(3): 311-320.
[5] BARBARA S. Pexider equation on a restricted domain [J]. Demonstratio Math, 2010, XLIII(1): 81-88.
[6] ACZEL J. Extension of a generalized Pexider equation[J]. Proc Am Math Soc, 2005, A133: 3227-3233.
[7] BAJER M. A generalized Pexider equation [J]. Acta Mathematica Hungarica, 1997, 75(1/2): 43-54.
[8] YUN S, PARK S. The stability of quadratic $ \alpha $ -functional equations [J]. Journal of Mathematical Sciences and Applications, 2016, 9(6): 3980-3991.
[9] ZI Y, LU G, YUAN F J, et al. The stability of additive $ \left( {\alpha, \beta } \right) $-functional equations[J]. Journal of Applied Analysis and Computation, 2019(6): 2295-2307.
[10] MURSALEEN M, MOHIUDDINE S A, KHURSHEED J, et al. On the stability of fuzzy set-valued functional equations[J]. Congent Mathematics, 2017(4): 1-12.
[11] YANG X, SHEN G, LIU G. On the stability of the functional equations in matrix normed spaces [J]. Journal of Mathematical Research with Applications, 2016, 36(3): 328-340.
[12] SONG J S, LI Y H. Hyers-Ulam-Rassias stability of a quadratic-additive type function equation in fuzzy space [J]. International Electronic Journal of Pure and Applied Mathematics, 2015, 9(3): 121-136.
[13] 徐林, 宋常修. 一类三阶时滞微分方程的稳定性和有界性[J]. 广东工业大学学报, 2015, 32(1): 128-132.
XU L, SONG C X. Stability and boundedness of a class of third-order delay differential equations [J]. Journal of Guangdong University of Technology, 2015, 32(1): 128-132.
[14] 黄慧敏, 郭承军. 一类脉冲随机微分方程解的稳定性[J]. 广东工业大学学报, 2020, 37(6): 56-62.
HUANG H M, GUO C J. Stability of solutions for a class of impulsive stochastic differential equations[J]. Journal of Guangdong University of Technology, 2020, 37(6): 56-62.
[15] ACZEL J. Lectures on Function Equations and Their Applications[M]. New York: Academic Press, 1966.
[16] GUIASU S. Information Theory with Applications[M]. New York: McGraw-Hill, 1977.
[1] 周云, 卫雪梅. 一个具有Robin自由边界的双曲肿瘤生长模型解的定性分析[J]. 广东工业大学学报, 2021, 38(02): 60-65.
[2] 黄慧敏, 郭承军. 一类脉冲随机微分方程解的稳定性[J]. 广东工业大学学报, 2020, 37(06): 56-62.
[3] 陈荣宁, 卫雪梅. 广义的Camassa-Holm方程的弱适定性[J]. 广东工业大学学报, 2020, 37(02): 80-86.
[4] 梁小珍, 卫雪梅. 结肠癌细胞代谢模型解的存在性[J]. 广东工业大学学报, 2019, 36(05): 38-42.
[5] 朱亚杰, 朱红波. 全空间RN上的渐近线性Schrödinger方程[J]. 广东工业大学学报, 2019, 36(02): 78-85.
[6] 陈美癸, 卫雪梅. 视网膜氧分布与脑红蛋白作用模型解的存在唯一性[J]. 广东工业大学学报, 2018, 35(05): 45-50.
[7] 金应华, 向思源. 对数线性模型下基于φ-散度测度的均值滑动检验[J]. 广东工业大学学报, 2018, 35(04): 32-36.
[8] 陆宇. 一类四阶边值问题解的存在性[J]. 广东工业大学学报, 2014, 31(2): 69-73.
[9] 唐浩怡, 彭红云. 三维趋化系统全局弱解的存在性和渐近稳定性[J]. 广东工业大学学报, 2022, 39(01): 93-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!