广东工业大学学报 ›› 2021, Vol. 38 ›› Issue (05): 1-9.doi: 10.12052/gdutxb.210050

• •    下一篇

基于多集群系统的车辆协同换道控制

谢光强, 赵俊伟, 李杨, 许浩然   

  1. 广东工业大学 计算机学院,广东 广州 510006
  • 收稿日期:2021-03-18 出版日期:2021-09-10 发布日期:2021-07-13
  • 通信作者: 李杨(1980–),女,教授,博士,主要研究方向为多智能体、差分隐私保护,E-mail:liyang@gdut.gdut.edu.cn E-mail:liyang@gdut.gdut.edu.cn
  • 作者简介:谢光强(1979–),男,教授,博士,主要研究方向为多智能体、智能控制、差分隐私保护
  • 基金资助:
    国家自然科学基金资助项目(61876043,61472089)

Cooperative Lane-changing Based on Multi-cluster System

Xie Guang-qiang, Zhao Jun-wei, Li Yang, Xu Hao-ran   

  1. School of Computers, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2021-03-18 Online:2021-09-10 Published:2021-07-13

摘要: 针对智能联网环境下的多车协同换道问题, 设计一个基于多集群系统的车辆协同控制框架。给出了虚拟领导者的选取条件, 智能联网车辆通过分布式集群划分算法选取邻居车辆、领导者、虚拟领导者作为控制协议的状态演化。在此基础上, 提出适用于集群空间分配的间距控制算法和基于领导者跟随者的集群控制协议, 使换道车辆扩大前后车辆纵向距离以达到安全换道间距。理论分析采取多微分方程求解的方式, 证明所提控制协议能保证集群内的局部一致性和集群间的群一致性。仿真实例表明, 所提算法与控制协议实现多集群速度收敛一致, 车辆间保持期望安全间距以稀疏队形稳定行驶, 多辆车辆安全准确换道到目标车道。

关键词: 出口匝道, 智能网联车辆, 协同控制, 多智能体系统, 分布式编队

Abstract: Aiming at the problem of multi vehicle cooperative control in an environment with connected and automated vehicles, a cooperative lane changing framework is proposed based on multi cluster system. The selection conditions of virtual leader are given. Connected and Automated Vehicles (CAVs) select neighbors, leader and virtual leader as the state evolution of control protocol through distributed clustering algorithm. On this basis, a space control algorithm for cluster space allocation and a leader-follower control protocol based on cluster system are designed to make the target vehicles extend the longitudinal distance between adjacent vehicles to achieve safe lane changing distance. Theoretical analysis verifies that the proposed control protocol can guarantee the local consistency within the cluster and the group consistency among clusters by solving multiple differential equations. The simulation results show that the proposed algorithm and control protocol can make the multi clusters converge uniformly and Cavs maintain an expected safe distance to drive stably in a sparse formation. As a result, CAVs change safely and accurately to the target lane.

Key words: off ramps, connected and automated vehicle, cooperative control, multi-agent system, platoon

中图分类号: 

  • TP391
[1] JIN W L. A kinematic wave theory of lanechanging vehicular traffic [J]. Transportation Research Part B, 2005, 44(8): 1001-1021.
[2] YANG Q, KOUTSOPOULOS H N. A microscopic traffic simulator for evaluation of dynamic traffic management systems [J]. Transportation Research Part C: Emerging Technologies, 1996, 4(3): 113-129.
[3] JULA H, KOSMATOPOULOS E B, IOANNOU P A. Collision avoidance analysis for lane changing and merging [J]. IEEE Transactions on Vehicular Technology, 2000, 49(6): 2295-2308.
[4] CHOWDHURY D, WOLF D E, SCHRECKENBERG M. Particle hopping models for two-lane traffic with two kinds of vehicles: effects of lane-changing rules [J]. Physica A: Statistical Mechanics and Its Applications, 1997, 235(3-4): 417-439.
[5] 王永明, 周磊山, 吕永波. 基于元胞自动机交通流模型的车辆换道规则[J]. 中国公路学报, 2008(1): 93-97.
WANG Y M, ZHOU L S, LYU Y B. Lane changing rules based on cellular automaton traffic flow model [J]. China Journal of Highway and Transport, 2008(1): 93-97.
[6] 李珣, 马文哲, 赵征凡, 等. 车路协同下基于行车指引的改进STCA双车道换道模型[J]. 东南大学学报(自然科学版), 2020, 50(6): 147-155.
LI X, MA W Z, ZHAO Z F, et al. Improved STCA lane changing model for two-lane road based on driving guidance under CVIS [J]. Journal of Southeast University (Natural Science Edition), 2020, 50(6): 147-155.
[7] ALONSO J, MILANÉS V, PÉREZ J, et al. Autonomous vehicle control systems for safe crossroads [J]. Transportation Research Part C: Emerging Technologies, 2011, 19(6): 1095-1110.
[8] KATRAKAZAS C, QUDDUS M, CHEN W H, et al. Real-time motion planning methods for autonomous on-road driving: state-of-the-art and future research directions [J]. Transportation Research Part C: Emerging Technologies, 2015, 60: 416-442.
[9] YOU F, ZHANG R, LIE G, et al. Trajectory planning and tracking control for autonomous lane change maneuver based on the cooperative vehicle infrastructure system [J]. Expert Systems with Applications, 2015, 42(14): 5932-5946.
[10] 杨刚, 张东好, 李克强, 等. 基于车车通信的车辆并行协同自动换道控制[J]. 公路交通科技, 2017, 34(01): 120-129.
YANG G, ZHANG D H, LI K Q, et al. Cooperative same-direction automated lane-changing based on vehicle-to-vehicle communication [J]. Journal of Highway and Transportation Research and Development, 2017, 34(01): 120-129.
[11] LI B, ZHANG Y, FENG Y, et al. Balancing computation speed and quality: a decentralized motion planning method for cooperative lane changes of connected and automated vehicles [J]. IEEE Transactions on Intelligent Vehicles, 2018, 3(3): 340-350.
[12] XU M, LUO Y, YANG G, et al. Dynamic cooperative automated lane-change maneuver based on minimum safety spacing model[C]//2019 IEEE Intelligent Transportation Systems Conference (ITSC). Auckland: IEEE, 2019: 1537-1544.
[13] 韩静文. 智能网联条件下的多车协同换道研究[D]. 镇江: 江苏大学, 2020.
[14] BAI Y, ZHANG Y, HU J. A motion planner enabling cooperative lane changing: reducing congestion under partially connected and automated environment [J]. Journal of Intelligent Transportation Systems, 2020: 1-13.
[15] 谢光强, 黄驰, 李杨, 等. 组合控制协议增强多智能体系统一致性[J]. 计算机应用研究, 2020, 37(8): 2315-2319.
XIE G Q, HUANG C, LI Y, et al. Hybrid control for enhancing consensus of multiagent systems [J]. Application Research of Computers, 2020, 37(8): 2315-2319.
[16] 谢光强, 杜宇凡, 陈俊宇, 等. 一种基于切换拓扑和事件触发机制的一致性协议[J]. 计算机应用研究, 2021, 38(3): 770-776.
XIE G Q, DU Y F, CHEN J Y, et al. Consensus protocol based on switching topology and event triggering mechanism [J]. Application Research of Computers, 2021, 38(3): 770-776.
[17] 张振华, 彭世国. 二阶多智能体系统拓扑切换下的领导跟随一致性[J]. 广东工业大学学报, 2018, 35(2): 75-80.
ZHANG Z H, PENG S G, et al. Leader-following consensus of second-order multi-agent systems with switching topology [J]. Journal of Guangdong University of Technology, 2018, 35(2): 75-80.
[18] LI S E, ZHENG Y, LI K, et al. Dynamical modeling and distributed control of connected and automated vehicles: Challenges and opportunities [J]. IEEE Intelligent Transportation Systems Magazine, 2017, 9(3): 46-58.
[19] TALEBPOUR A, MAHMASSANI H S. Influence of connected and autonomous vehicles on traffic flow stability and throughput [J]. Transportation Research Part C: Emerging Technologies, 2016, 71: 143-163.
[20] JIA D, LU K, WANG J, et al. A survey on platoon-based vehicular cyber-physical systems [J]. IEEE Communications Surveys &Tutorials, 2015, 18(1): 263-284.
[21] DING J, LI L, PENG H, et al. A rule-based cooperative merging strategy for connected and automated vehicles [J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(8): 3436-3446.
[22] SANTINI S, SALVI A, VALENTE A S, et al. Platooning maneuvers in vehicular networks: a distributed and consensus-based approach [J]. IEEE Transactions on Intelligent Vehicles, 2018, 4(1): 59-72.
[23] LI Y, LI K, CAI L, et al. Feedback-based platoon control for connected autonomous vehicles under different communication network topologies[C]//2016 35th Chinese Control Conference (CCC). Chengdu: IEEE, 2016: 8806-8811.
[24] 罗贺富, 彭世国. 多时变时滞的多智能体系统的分布式编队控制[J]. 广东工业大学学报, 2017, 34(4): 89-96.
LUO H F, PENG S G. Distributed formation control for multi-agent systems with multiple time-varying delays [J]. Journal of Guangdong University of technology, 2017, 34(4): 89-96.
[25] LI Y, TANG C, LI K, et al. Consensus-based cooperative control for multi-platoon under the connected vehicles environment [J]. IEEE Trans on Intelligent Transportation Systems, 2018, 20(6): 2220-2229.
[26] 李姗. 车辆队列间协同换道控制策略[D]. 北京: 清华大学, 2018.
[27] DESIRAJU D, CHANTEM T, HEASLIP K. Minimizing the disruption of traffic flow of automated vehicles during lane changes [J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 16(3): 1249-1258.
[28] MEISSNER E, CHANTEM T, HEASLIP K. Optimizing departures of automated vehicles from highways while maintaining mainline capacity [J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(12): 3498-3511.
[29] ZHENG Y, RAN B, QU X, et al. Cooperative lane changing strategies to improve traffic operation and safety nearby freeway off-ramps in a connected and automated vehicles environment [J]. IEEE Transactions on Intelligent Transportation Systems, 2019, PP(99): 1-10.
[30] XU T, ZHANG Z, WU X, et al. Recognition of lane-changing behavior with machine learning methods at freeway off-ramps [J]. Physica A: Statistical Mechanics and its Applications, 2020: 125691.
[31] HU X, SUN J. Trajectory optimization of connected and autonomous vehicles at a multilane freeway merging area [J]. Transportation Research Part C: Emerging Technologies, 2019, 101: 111-125.
[1] 谷志华, 彭世国, 黄昱嘉, 冯万典, 曾梓贤. 基于事件触发脉冲控制的具有ROUs和RONs的非线性多智能体系统的领导跟随一致性研究[J]. 广东工业大学学报, 2023, 40(01): 50-55.
[2] 谢光强, 许浩然, 李杨, 陈广福. 基于多智能体强化学习的社交网络舆情增强一致性方法[J]. 广东工业大学学报, 2022, 39(06): 36-43.
[3] 曲燊, 车伟伟. FDI攻击下非线性多智能体系统分布式无模型自适应控制[J]. 广东工业大学学报, 2022, 39(05): 75-82.
[4] 刘建华, 李佳慧, 刘小斌, 穆树娟, 董宏丽. 事件触发机制下的多速率多智能体系统非脆弱一致性控制[J]. 广东工业大学学报, 2022, 39(05): 102-111.
[5] 曾梓贤, 彭世国, 黄昱嘉, 谷志华, 冯万典. 两种不同脉冲欺骗攻击下随机多智能体系统的均方拟一致性[J]. 广东工业大学学报, 2022, 39(01): 71-77.
[6] 张弘烨, 彭世国. 基于模型简化法的含有随机时延的多智能体系统一致性研究[J]. 广东工业大学学报, 2019, 36(02): 86-90,96.
[7] 张振华, 彭世国. 二阶多智能体系统拓扑切换下的领导跟随一致性[J]. 广东工业大学学报, 2018, 35(02): 75-80.
[8] 罗贺富, 彭世国. 多时变时滞的多智能体系统的分布式编队控制[J]. 广东工业大学学报, 2017, 34(04): 89-96.
[9] 唐平; 杨宜民;. 多智能体系统与足球机器人系统体系结构研究[J]. 广东工业大学学报, 2001, 18(4): 1-4.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!