广东工业大学学报 ›› 2012, Vol. 29 ›› Issue (2): 33-37.doi: 10.3969/j.issn.1007-7162.2012.02.006

• 综合研究 • 上一篇    下一篇

心脏补片的生物力学研究评述

  

  1. 广东工业大学 土木与交通工程学院,广东 广州 510006
  • 出版日期:2012-06-25 发布日期:2012-06-25
  • 作者简介:张吉桥(1980-),男,讲师,博士,主要研究方向为固体力学.
  • 基金资助:

    国家自然科学基金资助项目(11102043);广东工业大学博士启动基金资助项目(083065)
    张吉桥(1980),男,讲师,博士,主要研究方向为固体力学.

A Review of the Biomechanical Study of the Heart Patch

  1. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Online:2012-06-25 Published:2012-06-25

摘要: 细胞移植是心肌组织工程中治疗心肌梗死的一种潜在的治疗方法.心脏补片不仅是种子细胞的载体,还可抑制心脏的膨胀扩张,以促进种子细胞对梗死心肌组织的修复再生.心脏补片的研制已经成为基础与临床医学、材料科学和生物力学等的交叉热点.本文评述了心脏补片的生物力学研究现状,并就本领域今后值得关注的问题进行展望.

关键词: 心肌组织工程;心脏补片;生物力学;生物降解;优化设计

Abstract: Cell transplantation is a potential treatment for myocardial infarction in myocardial tissue engineering. The heart patch is not only the carrier of the seed cells, but it can also inhibit the expansion of the heart to facilitate the myocardial repair and regeneration. The development of the heart patch has become an interdisciplinary focus of basic and clinical medicine, materials science and biomechanics. It reviews the study of the heart patch in biomechanics, and proposes several points deserving further investigation in this field.

Key words: myocardial tissue engineering; heart patch; biomechanics; biodegradation; optimal design

[1] Baig M K, Mahon N, McKenna W J, et al. The pathophysiology of advanced heart failure[J]. Heart & Lung,1999,28(2):87-101.

[2] 周艳丽. 扩张型心肌病心肌与血管损伤和修复的机制[D].南京:南京医科大学第一附属医院, 2008.

[3] Orlic D, Kajstura J, Chimenti S, et al. Bone marow cells regenerate infarcted myocardium[J]. Nature, 2001,410(6829):701-705.

[4] Menasché P, Hagège A A, Scorsin M, et al. Myoblast Transplantation for heart failure[J]. Lancet, 2001,357(9252):279280.

[5] Assmus B, Schchinger V, Teupe C, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCAREAMI)[J]. Circulation,2002,106(24):3009-3017.

[6] Ohnishi S, Yanagawa B, Tanaka K, et al. Transplantation of mesenchymal stem cells attenuates myocardial injury and dysfunction in a rat model of acute myocarditis[J]. Journal of molecular and cellular cardiology, 2007, 42(1):88-97.

[7] 中国生物医学工程学会. 人工器官[EB/OL].[2012-02-03]. http:∥amuseum.cdstm.cn/AMuseum/organs/heart/xzbp/index.html.

[8] Kelley S T, Malekan R, Gorman Ⅲ J H,et al. Restraining infarct expansion preserves left ventricular geometry and function after acute anteroapical infarction[J]. Circulation, 1999, 99(1):135-142.

[9] Enomoto Y, Gorman III J H, Moainie S L, et al. Early ventricular restraint after myocardial infarction: Extent of the wrap determines the outcome of remodeling[J]. The Annals of Thoracic Surgery, 2005, 79(3):881-887.

[10] Leor J, Amsalem Y, Cohen S. Cells, scaffolds, and molecules for myocardical tissue engineering[J]. Pharmacology & Therapeutics, 2005, 105(2):151-163.

[11] Wei H J, Chen C H, Lee W Y, et al. Bioengineered cardiac patch constructed from multilayered mesenchymal stem cells for myocardial repair[J]. Biomaterials, 2008, 29(26):3547-3556.

[12] Chen Q Z, Harding S E, Ali N N, et al. Biomaterials in cardiac tissue engineering: Ten years of research survey[J].Materials Science and Engineering R, 2008,59(1-6):137.[13] Cwajg J M, Cwajg E, Nagueh S F, et al. Enddiastolic wall thickness as a predictor of recovery of function in myocardial hibernation: Relation to restredistribution Tl201 tomography and dobutamine stress echocardiography[J]. Journal of the American College of Cardiology, 2000, 35(5):1152-1161.

[14] Fujimoto K L, Tobita K, Merryman W D, et al. An elastic, biodegradable cardiac patch induces contractile smooth muscle and improves cardiac remodeling and function in subacute myocardial infarction[J]. Journal of the American College of Cardiology,2007,49(23):2292-2300.

[15] Christman K L, Vardanian A J, Fang Q Z, et al. Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium[J]. Journal of the American College of Cardiology, 2004, 44(3):654-660.

[16] Christman K L, Fok H H, Sievers R E, et al. Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction[J]. Tissue Engineering, 2004, 10(3-4):403-409.

[17] Wall S T, Walker J C, Healy K E, et al. Theoretical impact of the injection of material into the myocardium a finite element model simulation[J]. Circulation, 2006, 114(24):2627-2635.

[18] McDevitt T C, Woodhouse K A, Hauschka S D, et al. Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair[J]. Journal of Biomedical Materials Research Part A,2003,66A(3):586-595.

[19] Alperin C, Zandstra P W, Woodhouse K A. Polyurethane films seeded with embryonic stem cellderived cardiomyocytes for use in cardiac tissue engineering applications[J]. Biomaterials, 2005, 26(35):7377-7386.

[20] Fujimoto K L, Guan J, Oshima H, et al. In vivo evaluation of a porous, elastic, biodegradable patch for reconstructive cardiac procedures[J]. The Annals of Thoracic Surgery 2007, 83(2):648-654.

[21] Gao J, Crapo P M, Wang Y. Macroporous elastomeric scaffolds with extensive micropores for soft tissue engineering[J]. Tissue Engineering, 2006, 12(4):917-925.

[22] Chen Q Z, Bismarck A, Hansen U, et al. Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue[J]. Biomaterials, 2008, 29(1):47-57.

[23] Hata H, Br A, Dorfman S, et al. Engineering a novel threedimensional contractile myocardial patch with cell sheets and decellularised matrix[J]. European Journal of Cardiothoracic Surgery, 2010, 38(4):450-455.

[24] Prabhakaran M P, Kai D, GhasemiMobarakeh L, et al. Electrospun biocomposite nanofibrous patch for cardiac tissue engineering[J]. Biomedical Materials, 2011, 6(5):055001-055012.

[25] Venugopal J R, Prabhakaran M P, Mukherjee S, et al. Biomaterial strategies for alleviation of myocardial infarction[J]. Journal of the Royal Society Interface, 2012, 9(66):119.

[26] 冯元桢. 生物力学—活组织的力学特性[M]. 长沙: 湖南科技出版社, 1986.

[27] Hunter P J, McCulloch A D, Keurs H J. Modelling the mechanical properties of cardiac muscle[J]. Progress in Biophysics and Molecular Biology, 1998, 69(23):289331.

[28] Coirault C, Samuel J L, Chemla D, et al. Increased compliance in diaphragm muscle of the cardiomyopathic Syrian hamster[J]. Journal of Applied Physiology, 1998, 85(5):1762-1769.

[29] Weis S M, Emery J L, Becker K D, et al. Myocardial mechanics and collagen structure in the osteogenesis imperfecta murine (oim) [J]. Circulation Research, 2000,87(8):663-669.

[30] Nagueh S F, Shah G, Wu Y, et al. Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy[J]. Circulation,2004,110(2):155-162.

[31] 章湘明. 心脏起搏器螺旋电极与心肌的交互作用和界面安全[D]. 北京: 清华大学航天航空学院,2007.

[32] 方红荣. 心肌本构模型和数值心脏的力学研究[D]. 北京: 清华大学航天航空学院, 2007.

[33] Burkhoff D. Mechanical properties of the heart and its interaction with the vascular system[EB/OL]. [2012-02-03].http:∥www.columbia.edu/itc/hs/medical/heartsim/review.pdf.

[34] Burkhoff D, Mirsky I, Suga H. Assessment of systolic and diastolic ventricular properties via pressurevolume analysis: a guide for clinical, translational, and basic researchers[J]. The American Journal of Physiology  Heart and Circulatory Physiology,2005,289(2):H501-H512.

[35] McCulloch A D. Cardiac Biomechanics[C] ∥ Bronzino J D. Biomedical Engineering Fundamentals. CRC Press, 2006, 54-1,54-27.

[36] Yang C, Tang D, Haber I, et al. In vivo MRIbased 3D FSI RV/LV models for human right ventricle and patch design for potential computeraided surgery optimization[J]. Computers and Structures,2007, 85(11-14):988-997.

[37] Tang D, Yang C, Geva T, et al. Patientspecific MRIbased 3D FSI RV/LV/patch models for pulmonary valve replacement surgery and patch optimization[J]. Journal of Biomechanical Engineering, 2008,130(4):041010.1-041010.10.

[38] 刘锋. 吕维雪. 有限元方法在心脏力学研究中的应用[J]. 国外医学:生物医学工程分册, 1999, 22(3):137-144.

Liu Feng, Lu Weixue. Application of the finite element method in the study of cardiac mechanics[J]. Foreign Medical Sciences :Biomedical Engneering Fascicle, 1999, 22(3):137-144.

[39] 张力峰, 刘锋, 吕维雪. 虚拟心脏的研究与应用[J]. 中国医疗器械杂志, 2000, 24(2):93-96.

Zhang Lifeng, Liu Feng, Lu Weixue. Virtual heart studies and its applications[J]. Chinese Journal of Medical Instrumentation, 2000, 24(2):93-96.

[40] Liu F, Lu W X, Xia L, et al. The construction of threedimensional composite finite element mechanical model of human left ventricle[J]. JSME International Journal Series C, 2001,44(1):125-133.

[41] 吴国华, 刘锋, 夏灵, 等. 人体左心室复合材料有限元机械模型的建立[J]. 中国生物医学工程学报, 2002, 21(5):404-410.

Wu Guohua, Liu Feng, Xia Ling, et al. Construction of three dimensional composite finite element mechanical model of human left ventricle[J]. Chinese Journal of Biomedical Engineering,2002,21(5):404-410.

[42] Nash M. Mechanics and material properties of the heart using an anatomically accurate mathematical model[D]. New Zealand: School of Engineering, the University of Auckland,1998.

[43] 詹长安, 冯焕清, 陈强. 基于实测数据的空间堆叠法心室实体造型[J]. 中国科学技术大学学报, 2002, 32(1):104-110.

Zhan Changan, Feng Huanqing, Chen Qiang. A solid model of human ventricles based on real measured data and spatial pile enumeration[J]. Journal of University of Science and Technology of China,2002,32(1):104110.

[44] 邱鹏, 李桥, 刘兵, 等. 基于虚拟人数据的心脏表面模型三维重建及显示[J]. 生物医学工程研究, 2005, 24(3):150-152.

Qiu Peng, Li Qiao, Liu Bin, et al. Threedimensional reconstruction and display of heart surface model based on virtual human data[J]. Journal of Biomedical Engineering Research, 2005, 24(3):150-152.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!