广东工业大学学报 ›› 2010, Vol. 27 ›› Issue (2): 50-53.

• 综合研究 • 上一篇    下一篇

纳米制冷剂在水平光管内沸腾换热的实验研究

  

  1. 广东工业大学材料与能源学院,广东广州510006
  • 出版日期:2010-06-25 发布日期:2010-06-25
  • 作者简介:林成祥(1985-),男,硕士研究生,主要研究方向为纳米制冷剂传热特性
  • 基金资助:

    广东佛山市产学研项目(南科[2008]59号)

Experimental Study of Nano-refrigerant Flow Boiling Heat Transfer in the Horizontal Smooth Tubes

  1. Faculty of Materials and Energy ,Guangdong University of Technology,Guangzhou 5 10006,China
  • Online:2010-06-25 Published:2010-06-25

摘要: 纳米制冷剂能否强化管内沸腾换热,El前尚无明确的结论.将配制0.1 g/L的CNTs/R141b纳米制冷剂在内径为8.12 mm的水平光滑圆管内进行沸腾换热实验,光管采用电加热丝进行恒热流密度加热.纳米制冷剂采用HCFC141b混加碳纳米管,体积密度为0.1 dE.实验测试范围为:(i)质量流速为95.7~382.9 kg/(ITI ·S);(ii)热流密度为5~20 kW/m ;(iii)人口干度为0.1~0.8.考察了质量流速、千度及热流密度等因素对纳米制冷剂管内沸腾换热的影响.实验结果表明:在低质量流速(95.7 kg/(m ·s))下纳米制冷剂能够强化管内沸腾换热,随着流量及平均干度增加,纳米制冷剂强化换热的效果将会变小,甚至引起换热恶化.

关键词: CNTs/RI41 b;沸腾换热系数;水平光滑管

Abstract: It is not clear whether Nano-refrigerant can enhance boiling heat transfer in tubes.It investigates experimentally nano—refrigerant boiling heat transfer in a horizontal smooth tube(8.1 2 mmlD),a tube uniformly heated by electric wire.The nano-refrigerant was HCFC141 b mixed with CNT and its volume concentration was 0.1 g/L.The experimental tests were carried out under the following conditions:(i)the refrigerant mass fluxes within the range 95.7~382.9 k (m ·s);(ii)the heat fluxes within the range 5~20 kW/m ;(iii)the inlet vapor qualities from 0.1 to 0.8.The effects on measured heat transfer coeficient of mass flux,imposed heat flux and inlet vapor
quality were examined in detail.The experimental results show that the nano—refrigerant will enhance boiling heat transfer within small mass fluxes(95.7 kg/(m ·s)).However,its effect will be weakened or it will even reduce heat transfer coeficient as the mass fluxes and vapor qualities increase.

Key words: CNTs/HCFC141 b;Boiling heat transfer;horizontal smooth tube

[1]毕胜山,史琳.纳米流体沸腾传热研究进展[J].化工进展,2007,26(10):1411-1418.

[2]林宗虎,汪军,李瑞阳.强化传热技术[M].北京:化学工业出版社,2006.

[3]Choi S U S.Enhancing thermal conductivity of fluids with nano—particles[J].ASME FED,1995,231(66):99-103.

[4]李强.纳米流体强化流体传热机理研究[D].南京:南京理工大学动力工程学院,2004.

[5]Lee S P,Choi U S.App lication of metallic nanoparticle SUSpension in advanced cooling system[C]∥Known Y,Davis D.Chung H.eds.ASM E Pressure Vessel D iv Publ PVP.New York:ASME,1996:227-234.

[6]Wen D S,Ding Y L.Experimental investigation into the pool boiling heat transfer of aqueous Based',/一alumina nanofluids[J].Journal of Nanoparticle Research,2005,7:265-274.

[7]Witharana S.Boiling of refrigerants on enhanced surfaces and boiling of nanofluids[D].Sweden:Royal Institute of Technology,Stockholm ,2003.

[8]Hao Peng,Guoliang Ding,Weiting jiang.Heat transfer characteristics of refrigerant—based nanofluid flow boiling inside a horizontal smooth tube[J].International journal of refrigeration,2009,3(2):1-12.

[9]Das S K,Putra N,Roetzel W.Pool boiling of nano—fluids on horizontal narrow tubes[J].International Journal of Multiphase Flow,2003,29:1237-1247.

[1O]李春辉.纳米颗粒悬浮液核态沸腾与传热[D].北京:清华大学热能系,2005.

[11]毕胜山,史琳.纳米制冷剂冰箱性能的实验研究[J].清华大学学报:自然科学版,2007,47(11):2002—2005.

[12]施明恒,帅美琴,赖彦锷,等.纳米颗粒悬浮液池内泡状沸腾的实验研究[J].工程热物理学报,2006,27(2):298-300.

[13]Park Ki Jung,Jung Dongsoo.Boiling heat transfer enhancement with carbon nanotubes for refrigerants used in building air—conditioning[J].Energy and Buildings,2007,39

(9):1061-1064.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!