[1] GUPTA M, JIN L, Homma N. Static and Dynamic Neural Networks:From Fundamentals to Advanced Theory[M]. New York:Wiley-IEEE Press, 2003.
[2] 郑胜林, 彭明明, 潘保昌. 一种基于Hough变换的神经网络字符识别方法[J]. 广东工业大学学报, 2003, 20(4):73-77. ZHENG S L, PENG M M, PAN B C. A method for characters recognition based on the hough transform and neural network[J]. Journal of Guangdong University of Technology, 2003, 20(4):73-77.
[3] ENSARI T, ARIK S. Global stability of a class of neural networks with time-varying delay[J]. IEEE Transactions on Circuits Systems II:Analog and Digital Signal Processing, 2005, 52(2):126-130.
[4] KWON O M, PARK J H, Lee S M. On robust stability for uncertain cellular neural networks with interval time varying delays[J]. IET Control Theory & Applications, 2008, 2(7):625-634.
[5] KWON O M, PARK J H. Delay dependent stability for uncertain cellular neural networks with discrete and distribute time-varying delays[J]. Journal of the Franklin Institute, 2008, 345(7):766-778.
[6] ZHU Q X, CAO J D. Stability analysis of Markovian jump stochastic BAM neural networks with impulse control and mixed time delays[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(3):467-479.
[7] ZHANG C K, HE Y, LI J, et al. Delay-dependent stability criteria for generalized neural networks with two delay components[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(7):1263-1276.
[8] HILL D, MOYLAN P. The stability of nonlinear dissipative systems[J]. IEEE Transactions on Automatic Control, 1976, 21(5):708-711.
[9] LOZANO R, BROGLIATO B, EGELAND O, et al. Dissipative Systems Analysis and Control:Theory and Applications[M]. London, UK.:Springer, 2007.
[10] XIE L H, FU M Y, LI H Z. Passivity analysis and passification for uncertain signal processing systems[J]. IEEE Transactions on Signal Process, 1998, 46(9):2394-2403.
[11] WU C W. Synchronization in arrays of coupled nonlinear systems:passivity circle criterion and observer design[J]. IEEE Transactions on Circuits and Systems. I:Fundamental Theory and Applications, 2001, 48(10):1257-1261.
[12] LI C G, LIAO X F. Passivity analysis of neural networks with time delay[J]. IEEE Transactions on Circuits and Systems II:Analog and Digital Signal Processing, 2005, 52(8):471-475.
[13] LOU X Y, CUI B T. Passivity analysis of integro-differential neural networks with time-varying delays[J]. Neurocomputing, 2007, 70(4-6):1071-1078.
[14] ZHU J, LENG Q K, ZHANG Q L. Delay-dependent passivity criterion for hopfield neural networks[C]. 2010 Chinese Control and Decision Conference, Xuzhou, China, 2010:1267-1272.
[15] ZENG H B, HE Y, WU M, et al. Passivity analysis for neural with a time-varying delay[J]. Neurocomputing, 2011, 74(5):730-734.
[16] ZENG H B, XIAO S P, ZHANG C F, et al. Further results on passivity analysis of neural networks with time-varying delay[C], 26th Chinese Control and Decision Conference (CCDC), Changsha, China, 2014:161-165.
[17] ZHANG B Y, XU S Y, LAM J. Relaxed passivity condition for neural networks with time-varying delays[J]. Neurocomputing, 2014, 142(1):299-306.
[18] WANG Z D, LIU Y R, LIU X H. Global exponential stability of generalized recurrent neural networks with discrete and distributed delays[J]. Neural Networks, 2006, 19(5):667-675.
[19] GU K. An integral inequality in the stability problem of time-delay systems[C]. Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, 2000, 3(3):2805-2810.
[20] PARK P G, KO J W, JEONG C. Reciprocally convex approach to stability of systems with time-varying delays[J]. Automatica, 2011, 47(1):235-238.
[21] BOYD S, GHAOHUI L E, FERON E, et al. Linear matrix inequalities in system and control theory[M]. Philadelp-hiaz:SIAM, 1994.
[22] PETERSEN I R, HOLLOT C V. A Riccati equation approach to the stabilization of uncertain linear systems[J]. Automatica, 1986, 22(4):397-411. |