广东工业大学学报 ›› 2017, Vol. 34 ›› Issue (02): 80-85.doi: 10.12052/gdutxb.150128

• 综合研究 • 上一篇    下一篇

一种改进的无线传感器网络DV-Hop定位算法

陈继峰, 刘广聪, 彭成平   

  1. 广东工业大学 计算机学院, 广东 广州 510006
  • 收稿日期:2015-11-25 出版日期:2017-03-09 发布日期:2017-03-09
  • 通信作者: 刘广聪(1970-),男,副教授,主要研究方向为无线传感器网络.E-mail:Liugc@gdut.edu.cn E-mail:Liugc@gdut.edu.cn
  • 作者简介:陈继峰(1992-),男,硕士研究生,主要研究方向为无线传感器网络.
  • 基金资助:

    广东省科技计划项目(2015B090901017);广州市科技计划项目(201508020030)

An Improved DV-Hop Localization Algorithm for Wireless Sensor Networks

Chen Ji-feng, Liu Guang-cong, Peng Cheng-ping   

  1. School of Computers, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2015-11-25 Online:2017-03-09 Published:2017-03-09

摘要:

针对传统的DV-Hop定位算法的定位误差大、参与定位的信标节点选取不合理问题,提出一种改进的方法,将共线度方法运用在信标节点组的选取上,使其共线度满足预定的范围.选出所有满足共线度范围的信标节点组,在每个组合中,判断信标节点与未知节点之间的位置关系.利用信标节点之间的真实距离,通过任意两个估计距离值对未知节点进行初步的定位.在每组中,采用多次循环选取两个估计值获得多个未知节点估计位置,通过数据挖掘领域内的聚类分析方法对定位结果进行优化,获得最终的未知节点估计坐标.仿真实验表明,在未增加额外节点硬件开销的情况下,改进的算法比改进前的算法更有效地减少定位误差,提高了定位的准确性,同时,不受个别定位误差较大对最终结果的影响,健壮性较强.

关键词: 无线传感器网络, DV-Hop算法, 定位, 共线度, DBSCAN聚类算法

Abstract:

Aiming at the big estimation error and the unreasonable selection to the participant positioning beacon nodes in the traditional DV-Hop localization algorithm, an improved DV-Hop localization algorithm for wireless sensor networks is proposed. The degree of collinearity method is used in the selection of the beacon node group. As long as the degree of collinearity of the beacon node group meets a predetermined range, the beacon node group will be selected. In each of these groups, the position relationship between beacon nodes and unknown nodes is discerned, the real distance between beacon nodes made full use of, and the localization of unknown nodes made by using any two estimated values, with a number of cycles in each group selecting two estimates to get a lot of unknown nodes estimate position, and finally the estimated coordinates of unknown nodes are obtained by clustering analysis in the field of data mining. The simulation shows that the improved algorithm can reduce the localization error and improve the accuracy of the algorithm and robustness without any increase in the hardware overhead, and at the same time, it is insensitive to some of the larger errors in the final result.

Key words: wireless sensors networks, DV-Hop algorithm, localization, collinearity, DBSCAN-based clustering analysis

中图分类号: 

  • TP393

[1] 钱志鸿, 王义君. 面向物联网的无线传感器网络综述[J]. 电子与信息学报, 2013, 35(1):215-227.QIAN Z H, WANG Y J. Internet of things-oriented wireless sensor networks review[J]. Journal of Electronics and Information Technology, 2013, 35(1):215-227.
[2] 李鹤, 刘广聪, 蝴蝶. 无线传感器网络中基于能量比的簇首选择机制[J]. 广东工业大学学报, 2014, 31(3):83-87.LI H, LIU G C, HU D. Cluster-head Selection Mechanism Based on Energy Ratio in Wireless Sensor Networks[J]. Journal of Guangdong University of Technology, 2014, 31(3):83-87.
[3] CENEDESE A, ORTOLAN G, BERTINATO M. Low-density wireless sensor networks for localization and tracking in critical environments[J]. IEEE Transactions on Vehicular Technology, 2010, 59(6):2951-2962.
[4] MERT B, LIU M, SHEN W M, et al. Localization in cooperative wireless sensors networks:A review[C]//Proceedings of the 200913th International Conference on Computer Supported Cooperative Work in Design. Santiago:IEEE 2009:438-443.
[5] BULUSU N, HEIDEMANN J, ESTRIN D. GPS-Less low cost outdoor localization for very small devices[J]. IEEE Personal Communication Magazine, 2000, 7(5):28-34.
[6] HE T, HUANG C, BLUM B M, et al. Range-free localization schemes for large scale sensor networks[C]//Proc of the 9th Annual Int'1 Conf. on Mobile Computing and Networking. San Diego:ACM Press, 2003, 81-95.
[7] NICULESCU D. NATH B. DV-based positioning in ad hoc networks[J]. Telecommunication Systems, 2003, 22(1):267-280.
[8] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the 2th International Conference on Knowledge Discovery and Data Mining (KDD-96). Oregon:[s.n.], 1996.
[9] 于亚飞, 周爱武. 一种改进的DBSCAN密度算法[J]. 计算机技术与发展, 2011, 21(2):30-33.YU Y F, ZHOU A W. An improved algorithm of DBSCAN[J]. Computer Technology and Development, 2011, 21(2):30-33.
[10] 朱炫璋. 基于DBSCAN的无线传感器网络定位方法[J]. 计算机工程与应用, 2013, 49(11):80-83.ZHU X Z. Location method based on DBSCAN in wireless sensor networks[J]. Computer Engineering and Applications, 2013, 49(11):80-83.
[11] 郭世可. 基于颜色相似系数的图像分割方法研究[D]. 厦门:厦门大学软件学院, 2008.
[12] 蒋盛益, 王连喜. 聚类分析研究的挑战性问题[J]. 广东工业大学学报, 2014, 31(3):32-38.JIANG S Y, WANG L X. Some challenges in clustering analysis[J]. Journal of Guangdong University of Technology, 2014, 31(3):32-38.
[13] 张丽杰. 具有稳定饱和度的DBSCAN算法[J]. 计算机应用研究, 2014, 31(7):1972-1975.ZHANG L J. Stable saturation density of DBSCAN algorithm[J]. Application Research of Computers, 2014, 31(7):1972-1975.
[14] 蔡岳. 一种应用于搜索引擎的文本聚类算法[D]. 北京:北京林业大学信息学院, 2010.
[15] 吴凌飞, 孟庆虎, 梁华为. 一种基于共线度的无线传感器网络定位算法[J]. 传感技术学报, 2009, 22(5):722-727.WU L F, MENG Q H, LIANG H W. A collinearity-based localization algorithm for wireless sensor networks[J]. Chinese Journal of Sensors and Actuators, 2009, 22(5):722-727.
[16] 孙凌燕. 基于密度的聚类算法研究[D]. 太原:中北大学理学院, 2009.

[1] 郭晓彤, 王华, 吴希文, 柏俊, 戴泉. 基于WebGIS的形变监测成果管理与展示系统[J]. 广东工业大学学报, 2020, 37(06): 50-55.
[2] 揭云飞, 王峰, 钟有东, 智凯旋, 熊超伟. 基于地面特征的单目视觉机器人室内定位方法[J]. 广东工业大学学报, 2020, 37(05): 31-37.
[3] 许峻宁, 陈璟华, 荣泽成, 武宁. 基于改进蝙蝠算法的配电网故障区段定位[J]. 广东工业大学学报, 2020, 37(05): 62-67.
[4] 荣泽成, 陈璟华, 郭壮志, 许俊宁, 陈友鹏. 基于非线性互补约束的含DG配电网故障区段定位方法[J]. 广东工业大学学报, 2020, 37(04): 51-58.
[5] 周泽兴, 刘贻新, 张光宇. 法人身份视角下的新型研发机构创新阻碍及对策研究[J]. 广东工业大学学报, 2020, 37(01): 95-102.
[6] 翁韶伟, 彭一航, 危博, 易林, 叶武剑. 基于Inception-V3网络的双阶段数字视频篡改检测算法[J]. 广东工业大学学报, 2019, 36(06): 16-23.
[7] 梅琪, 王峰, 李诗语, 张智金. 一种抑制城市峡谷多径卫星信号的定位方法[J]. 广东工业大学学报, 2018, 35(02): 81-85.
[8] 张美杰, 张平. 微薄硅晶片高速视觉定位及矫正系统[J]. 广东工业大学学报, 2018, 35(01): 9-15.
[9] 邱文添, 王峰, 王家燃, 利传迈, 汪进, 李学易. 基于Xenomai实时Linux的北斗/GPS导航接收机[J]. 广东工业大学学报, 2018, 35(01): 50-55.
[10] 余俊鹏, 何炽荣. GPS-RTK辅助近景摄影测量光束法平差及精度分析[J]. 广东工业大学学报, 2017, 34(06): 73-77.
[11] 刘震宇, 李嘉俊, 王昆. 一种基于深度自编码器的指纹匹配定位方法[J]. 广东工业大学学报, 2017, 34(05): 15-21.
[12] 朱福利, 曾碧, 曹军. 基于粒子滤波的SLAM算法并行优化与实现[J]. 广东工业大学学报, 2017, 34(02): 92-96.
[13] 李德隆, 刘伟. 基于改进的SIFT特征点的双目定位[J]. 广东工业大学学报, 2017, 34(01): 90-94.
[14] 吴用, 万频, 王永华, 梁颋, 卢强. 认知无线网络小型移动主用户的定位算法研究[J]. 广东工业大学学报, 2017, 34(01): 60-64.
[15] 张业强, 刘怡俊. DMA控制器在导航基带SoC中的应用[J]. 广东工业大学学报, 2016, 33(01): 36-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!