广东工业大学学报 ›› 2017, Vol. 34 ›› Issue (05): 15-21.doi: 10.12052/gdutxb.170080
刘震宇, 李嘉俊, 王昆
Liu Zhen-yu, Li Jia-jun, Wang Kun
摘要: 对于浅层结构的室内定位方法难以构造复杂的室内信号模型,从而导致定位精度不高的问题,本文提出利用深度学习方法建立深层非线性学习模型,提高室内定位精度的RFB-SDAE算法.该算法通过约简及预处理去除指纹采集中的冗余信息,经过堆叠式去噪自编码器多层网络的预训练及参数调整,获得较为精确的非线性室内无线信号的模型表示,并利用该模型实现室内的区域定位.实验结果表明,RFB-SDAE相比于堆叠式去噪编码器和单层神经网络提高了定位准确率,且比堆叠式去噪编码器使用更少的运行时间.
中图分类号:
[1] LIU H, DARABI H, BANERJEE P, et al. Survey of wireless indoor positioning techniques and systems[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2007, 37(6):1067-1080. [2] 黄婷婷, 刘广聪, 陈海南. 无线传感器网络自定位算法的研究[J]. 广东工业大学学报, 2015, 32(4):127-131.HUANG T T, LIU G C, CHEN H N. Self-localization algorithm of wireless sensors networks[J]. Journal of Guangdong University of Technology, 2015, 32(4):127-131. [3] FARID Z, NORDIN R, ISMAIL M. Recent advances in wireless indoor localization techniques and system[J]. Journal of Computer Networks & Communications, 2013, 2013(42):15-15. [4] KIM R, LIM H, HWANG S N, et al. Robust indoor localization based on hybrid Bayesian graphical models[C]//IEEE GLOBECOM. Austin:IEEE. 2014:423-429. [5] YU F, JIANG M H, LIANG J, et al. An indoor localization of wifi based on support vector machines[J]. Advanced Materials Research, 2014, 926-930(5):2438-2441. [6] WANG X, GAO L, MAO S, et al. DeepFi:Deep learning for indoor fingerprinting using channel state information[C]//Wireless Communications and Networking Conference. New Orleans:IEEE, 2015:1666-1671. [7] LUO J, GAO H. Deep belief networks for fingerprinting indoor localization using ultrawide band technology[J]. International Journal of Distributed Sensor Networks, 2016, 2016:1-8. [8] GU Y, CHEN Y, LIU J, et al. Semi-supervised deep extreme learning machine for Wi-Fi based localization[J]. Neurocomputing, 2015, 166(C):282-293. [9] ZHANG W, LIU K, ZHANG W, et al. Deep neural networks for wireless localization in indoor and outdoor environments[J]. Neurocomputing, 2016, 194(C):279-287. [10] SPOLAÔR N, CHERMAN E A, MONARD M C, et al. ReliefF for multi-label feature selection[C]//Intelligent Systems (BRACIS), 2013 Brazilian Conference on Fortaleza. Brazil:IEEE, 2013:6-11. [11] TORRES-SOSPEDRA J, MONTOLIU R, MARTINEZ-USO A, et al. UJⅡndoorLoc:A new multi-building and multi-floor database for WLAN fingerprint-based indoor localization problems[C]//International Conference on Indoor Positioning and Indoor Navigation. Busan:IEEE, 2014:261-270. [12] 陈丽娜. WLAN位置指纹室内定位关键技术研究[D]. 上海:华东师范大学信息科学技术学院. [13] O'CONNOR P, NEIL D, LIU S C, et al. Real-time classification and sensor fusion with a spiking deep belief network[J]. Frontiers in Neuroscience, 2013, 7:178 [14] VINCENT P, LAROCHELLE H, LAJOIE I, et al. Stacked denoising autoencoders:learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11(12):3371-3408. [15] SCHMIDHUBER J. Deep learning in neural networks:An overview[J]. Neural Networks, 2014, 61:85 [16] DOUGHERTY E R. Small sample issues for microarray-based classification[J]. Comparative & Functional Genomics, 2001, 2(2):28-34. [17] FÉLIX G, SILLER M, ÁLVAREZ E N. A fingerprinting indoor localization algorithm based deep learning[C]//Ubiquitous and Future Networks (ICUFN), 2016 Eighth International Conference on. Vienna:IEEE, 2016:1006-1011. |
[1] | 吴俊贤, 何元烈. 基于通道注意力的自监督深度估计方法[J]. 广东工业大学学报, 2023, 40(02): 22-29. |
[2] | 刘冬宁, 王子奇, 曾艳姣, 文福燕, 王洋. 基于复合编码特征LSTM的基因甲基化位点预测方法[J]. 广东工业大学学报, 2023, 40(01): 1-9. |
[3] | 徐伟锋, 蔡述庭, 熊晓明. 基于深度特征的单目视觉惯导里程计[J]. 广东工业大学学报, 2023, 40(01): 56-60,76. |
[4] | 刘洪伟, 林伟振, 温展明, 陈燕君, 易闽琦. 基于MABM的消费者情感倾向识别模型——以电影评论为例[J]. 广东工业大学学报, 2022, 39(06): 1-9. |
[5] | 章云, 王晓东. 基于受限样本的深度学习综述与思考[J]. 广东工业大学学报, 2022, 39(05): 1-8. |
[6] | 郑佳碧, 杨振国, 刘文印. 基于细粒度混杂平衡的营销效果评估方法[J]. 广东工业大学学报, 2022, 39(02): 55-61. |
[7] | Gary Yen, 栗波, 谢胜利. 地球流体动力学模型恢复的长短期记忆网络渐进优化方法[J]. 广东工业大学学报, 2021, 38(06): 1-8. |
[8] | 赖峻, 刘震宇, 刘圣海. 基于全局数据混洗的小样本数据预测方法[J]. 广东工业大学学报, 2021, 38(03): 17-21. |
[9] | 揭云飞, 王峰, 钟有东, 智凯旋, 熊超伟. 基于地面特征的单目视觉机器人室内定位方法[J]. 广东工业大学学报, 2020, 37(05): 31-37. |
[10] | 岑仕杰, 何元烈, 陈小聪. 结合注意力与无监督深度学习的单目深度估计[J]. 广东工业大学学报, 2020, 37(04): 35-41. |
[11] | 曾碧, 任万灵, 陈云华. 基于CycleGAN的非配对人脸图片光照归一化方法[J]. 广东工业大学学报, 2018, 35(05): 11-19. |
[12] | 陈旭, 张军, 陈文伟, 李硕豪. 卷积网络深度学习算法与实例[J]. 广东工业大学学报, 2017, 34(06): 20-26. |
|