广东工业大学学报 ›› 2017, Vol. 34 ›› Issue (05): 65-72.doi: 10.12052/gdutxb.160124

• 综合研究 • 上一篇    下一篇

双种群烟花算法

徐焕芬, 刘伟, 谢月珊   

  1. 广东工业大学 应用数学学院, 广东 广州 510520
  • 收稿日期:2016-10-10 出版日期:2017-09-09 发布日期:2017-07-10
  • 作者简介:徐焕芬(1992-),女,硕士研究生,主要研究方向为智能计算.
  • 基金资助:
    国家自然科学基金资助项目(61202269)

Fireworks Algorithm Based on Dual Population for Optimization Problems

Xu Huan-fen, Liu Wei, Xie Yue-shan   

  1. School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China
  • Received:2016-10-10 Online:2017-09-09 Published:2017-07-10

摘要: 为了克服烟花算法收敛速度慢、种群多样性不足的缺陷,提出一种基于双种群策略的烟花算法.该算法两个种群并行独立运算,进化过程中两种群交叉执行爬山算子与协作算子;爬山算子有利于加强算法的局部搜索能力,协作算子促使两种群信息交换,维持种群多样性,避免陷入局部最优解;同时算法改进了最大爆炸半径的设置方法,采用锦标赛选择策略以提高算法的收敛速率.实验对比说明,新算法是一个有效的稳定算法,具有更高的求解精度和更快的收敛速度.

关键词: 烟花算法, 双种群, 协作算子, 爬山算子

Abstract: A fireworks algorithm based on dual population is proposed to solve optimization problems. A dual population strategy is used to amend the shortcomings, i.e. slow convergence and bad population diversity of the existing fireworks algorithms. Each of two populations is running independently. Meanwhile, they alternately perform the hill-climbing and collaborative operator during the evolution process. Therein, the hill-climbing operator can enhance the local search performance of the proposed algorithm. And the collaborative operator is utilized to maintain the population diversity, avoiding getting stuck in local optimal regions. Furthermore, the proposed algorithm improves the setting of the maximum amplitude of the explosion and uses the tournament selection strategy to improve the convergence rate. The experimental results indicate that the proposed algorithm is superior to the compared algorithms in terms of the stabilization and reliability for most of test problems. It has higher accuracy lever and faster convergence rate.

Key words: fireworks algorithm, dual population, collaborative operator, hill-climbing operator

中图分类号: 

  • TP301.6
[1] LI J Z, TAN Y. Orienting mutation based fireworks algorithm[C]//2015 IEEE Congress on Evolutionary Computa- tion(CEC).[s.n.]:IEEE, 2015:1265-1271. DOI:10.1109/CEC.2015.7257034. [2] ZHENG Y J, XU X L, LING H F, et al. A hybrid fireworks optimization method with differential evolution operators[J]. Neurocomputing, 2015, 148:75-82. [3] ZHENG S Q, LI J Z, JANECEK A, et al. A cooperative framework for fireworks algorithm[C]//IEEE/ACM Transactions on Computational Biology and Bioinformatics.[s.n.]:IEEE, 2016, 14(1):27-41. DOI:10.1109/TCBB. 2015.2497227. [4] ZHENG S Q, JANECEK A, LI J Z, et al. Dynamic search in fireworks algorithm[C]//2014 IEEE Congress on Evolutionary Computation(CEC).[s.n.]:IEEE, 2014:3222-3229. DOI:10.1109/CEC.2014.6900485. [5] SI T, GHOSH R. Explosion sparks generation using adaptive transfer function in firework Algorithm[C]//2015 Third International Conference on Signal Processing, Communication and Networking(ICSCN).[s.n.]:IEEE, 2015, 14(1):1-9. DOI:10.1109/ICSCN.2015.7219917. [6] 曹炬, 季艳芳. 改进的烟花爆炸优化算法及其收敛性分析[J]. 计算机工程与科学, 2012, 31(1):90-93.CAO G, JI Y F. An improved fireworks explosion optimization algorithm and its convergence Analysis[J]. An improved fireworks explosion optimization algorithm and its convergence Analysis[J]. Computer Engineer & Science, 2012, 31(1):90-93. [7] 朱晓东, 刘冲, 郭雅默. 基于烟花算法与差分进化算法的模糊分类系统设计[J]. 郑州大学学报(工学版), 2015, 36(6):47-51.ZHU X D, LIU C, GUO Y M. Design of fuzzy classification system based on fireworks optimization and differential evolution algorithm[J]. Journal of Zhengzhou University (Engineering Science), 2015, 36(6):47-51. [8] 李浩, 柏鹏, 张辉, 等. 反向烟花算法及其应用研究[J]. 西安交通大学学报, 2015, 49(11):82-87.LI H, BAI P, ZHANG H, et al. Backward fireworks algorithm and application research[J]. Journal of Xi'an Jiaotong University, 2015, 49(11):82-87. [9] CHAO Y, YING T. Fireworks algorithm with covariance mutation[C]//2015 IEEE Congress on Evolutionary Computation (CEC).[s.n.]:IEEE, 2015:1250-1256. DOI:10.1109/CEC.2015.7257032. [10] YU C, LI J Z, TAN Y. Improve enhanced fireworks algorithm with differential mutation[C]//2014 IEEE International Conference on Systems, Man, and Cybernetics(SMC).[s.n.]:IEEE, 2014:264-269. DOI:10.1109/SMC. 2014.6973918. [11] 杜振鑫. 烟花算法中烟花爆炸半径的改进研究[J]. 计算机时代, 2013, 1(1):28-29.DU Z X. Study on improvement of explosion radius in fireworks algorithm[J]. Computer Era, 2013, 1(1):28-29. [12] 谭营, 郑少秋. 烟花算法研究进展[J]. 智能系统学报, 2014,(5):515-528.TAN Y, ZHENG S Q. Recent advances in fireworks algorithm[J]. CAAI Transactions on Intelligent Systems, 2014,(5):515-528. [13] YAN P, ZHENG S Q, TAN Y, et al. An empirical study on influence of approximation approaches on enhancing fireworks algorithm[C]//2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC).[s.n.]:IEEE, 2012:1322-1327. DOI:10.1109/ICSMC.2012. 6377916. [14] 谭跃, 谭冠政, 叶勇, 等. 具有混沌局部搜索策略的双种群遗传算法[J]. 计算机应用研究, 2011, 28(2):469-471.TAN Y, TAN G Z, YE Y, et al. Dual population genetic algorithm with chaotic local search strategy[J]. Application Research of Computers, 2011, 28(2):469-471. [15] 柴岩, 周艳钊. 遗传算法的爬山法改进[J]. 辽宁工程技术大学学报(自然科学版), 2014, 33(7):996-999.CHAI Y, ZHOU Y Z. Improved genetic algorithm based on climbing[J]. Journal of Liaoning Technical University (Natural Science), 2014, 33(7):996-999. [16] 梁瑞仕, 姜云飞, 杨会志. 基于有序爬山法的前向启发式搜索规划[J]. 电子科技大学学报, 2013, 42(3):464-468.LIANG R S, JIANG Y F, YANG H Z. Forward heuristic search planning based on ordered hill climbing algorithm[J]. Journal of University of Electronic Science and Technology of China, 2013, 42(3):464-468. [17] 慕彩红, 焦李成, 刘逸. M-精英协同进化数值优化算法[J]. 软件学报, 2009, 20(11):2925-2938.MU C H, JIAO L C, LIU Y. M-elite coevolutionary algorithm for numerical optimization[J]. Journal of Software, 2009, 20(11):2925-2938. [18] 慕彩红, 焦李成, 刘逸. 求解约束优化问题M-精英协同进化算法[J]. 西安电子科技大学学报(自然科学版), 2010, 37(5):854-861.MU C H, JIAO L C, LIU Y. M-elite coevolutionary algorithm for constrained optimization[J]. Journal of Xidian University, 2010, 37(5):854-861. [19] 李松芳, 刘伟. 基于万有引力思想的遗传算子[J]. 广东工业大学学报, 2015, 32(1):121-127.LI S F,LIU W. Genetic operator based on the idea of universal gravitation[J]. Journal of Guangdong University of Technology, 2015, 32(1):121-127. [20] 夏桂梅, 曾建潮. 基于锦标赛选择遗传算法的随机微粒群算法[J]. 计算机工程与应用, 2007, 43(4):51-53.XIA G M, ZENG J C. Stochastic particle swarm optimization algorithm based on genetic algorithm of tournament selection[J]. Computer Engineering and Applications, 2007, 43(4):51-53. [21] LIANG J, SUGANTHAN P N, HERNANDEZ-DIAZ A G. Problem definitions and evaluation criteria for the cec2013 special session on real-parameter optimization[R/OL]. (2016-10-21)[2016-10-23]. http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2013/CEC2013.htm. [22] LIANG J J, QU B Y, SUGANTHAN P N. Problem definitions and evaluation criteria for the cec2014 special session and competition on single objective real-parameter numerical optimization[R/OL]. (2016-10-21)[2016-10-23]. http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2014/CEC2014.htm. [23] 王培崇, 李丽荣. 改进的混合混沌烟花爆炸搜索算法[J]. 微电子学与计算机, 2014, 31(11):69-73.WANG P C, LI L R. Improved hybrid chaos and fireworks explosion search algorithm[J]. Microelectronics & Computer, 2014, 31(11):69-73. [24] 刘全, 王晓燕, 傅启明, 等. 双精英协同进化遗传算法[J]. 软件学报, 2012, 23(4):765-775.LIU Q, WANG X Y, FU Q M, et al. Double elite coevolutionary genetic algorithm[J]. Journal of Software, 2012, 23(4):765-775. [25] LEI S, LIU W. A differential evolution algorithm based on self-adapting mountain-climbing operator[J]. Applied Mechanics and Materials, 2012, 266:2332-2338. [26] 崔逊学, 多目标进化算法及其应用[M]. 北京:国防工业出版社, 2006:93-94.
[1] 涂井先, 刘伟. 基于爬山算子和适应值共享的改进遗传算法[J]. 广东工业大学学报, 2011, 28(1): 78-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!