广东工业大学学报 ›› 2017, Vol. 34 ›› Issue (06): 61-67.doi: 10.12052/gdutxb.170002

• 综合研究 • 上一篇    下一篇

基于PCL和Qt的点云处理系统设计与开发

杨泽鑫1,2, 彭林才1, 刘定宁1, 丁琼1   

  1. 1. 广东工业大学 土木与交通工程学院, 广东 广州 510006;
    2. 同济大学 测绘与地理信息学院, 上海 200092
  • 收稿日期:2016-12-28 出版日期:2017-11-09 发布日期:2017-11-22
  • 通信作者: 丁琼(1983-),女,讲师,博士,主要研究方向为LiDAR数据处理和算法研究等.E-mail:qding_cn@163.com E-mail:qding_cn@163.com
  • 作者简介:杨泽鑫(1994-),男,硕士研究生,主要研究方向为点云处理与三维建模.
  • 基金资助:
    广东省自然科学基金资助项目(2015A030310155);大学生创新创业训练计划项目(201611845151,yj201611845384)

Development of Point Cloud Processing System Based on PCL and Qt

Yang Ze-xin1,2, Peng Lin-cai1, Liu Ding-ning1, Ding Qiong1   

  1. 1. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China;
    2. College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China
  • Received:2016-12-28 Online:2017-11-09 Published:2017-11-22

摘要: 三维激光扫描技术得到越来越多的应用,而目前已有点云处理软件存在算法单一、交互性弱的缺点,经常需要多个软件联合操作,耗费大量时间和精力. 因此,本研究基于PCL和Qt自主开发一套点云处理系统,包含点云读取、滤波、分割、建模等模块,同时提供友好的用户交互界面,为每个经典算法提供关键参数交互设置,提高点云处理效率及可靠性.

关键词: 点云处理, 系统开发, PCL, Structure Sensor

Abstract: 3D laser scanning technology has been widely used in various disciplines, but current point cloud processing software lacks efficient algorithms and user interaction, causing large time and effort consumption. This research aims to develop a new point cloud processing software which includes data importing, filtering, segmentation and modeling based on PCL and Qt. It provides key parameters setting for each typical algorithm and user friendly interface to produce optimal results for each module.

Key words: Point cloud processing, system design, PCL, Structure Sensor

中图分类号: 

  • TD326
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!