广东工业大学学报 ›› 2018, Vol. 35 ›› Issue (03): 87-89,112.doi: 10.12052/gdutxb.170175
杨淑伶
Yang Shu-ling
摘要: 研究跳跃扩散模型下美式期权定价问题的高效数值求解方法.首先在空间方向上利用高精度紧致差分格式离散期权定价模型,再对离散后所得到的常微分方程时间离散转化为线性互补问题.对线性互补问题的计算可求得期权价格的数值近似解.最后为了克服初始条件的不光滑性,对美式期权定价模型运用了奇异性分离的方法以提高计算结果的精度.数值实例验证了本文所建立算法的优越性.
中图分类号:
[1] BLACK F, SCHOLES M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81:637-659. [2] MERTON R. Option pricing when underlying stock returns are discontinuous[J]. Journal of Finance Economics, 1976, 3:125-144. [3] KOU S G. A jump-diffusion model for option pricing[J]. Management Science, 2002, 48(8):1086-1101. [4] 粱进. 具有跳扩散的美式期权二叉树计算格式的收敛速率[J]. 高等学校计算数学学, 2008, 30(1):76-96.LIANG J. On the convergence rate of the binomial tree scheme for an American option with jump-diffusion[J]. Numerical Mathematics A Journal of Chinese Universities, 2008, 30(1):76-96. [5] 何颖俞. 美式期权的三叉树定价模型[J]. 黑龙江大学自然科学学报, 2008, 25(1):81-84.HE Y Y. A trinomial tree methods for princing American options[J]. Journal of Natural Science of Heilongjiang University, 2008, 25(1):81-84. [6] ALMENDRAL A, OOSTERLEE C. Numerical valuation of options with jumps in the underlying[J]. Applied Numerical Mathematics, 2005, 53(1):1-18. [7] HALLUIN Y, FORSYTH P, VETZAL K. Robust numerical methods for contingent claims under jump diffusion processes[J]. IMA Journal of Numerical Analysis, 2005, 25:87-112. [8] FENG L, LINETSKY V. Pricing options in jump-diffusion models:an extrapolation approach[J]. Journal of the Operations Research Society of America, 2008, 56(2):304-325. [9] 钟坚敏, 柴昱洲, 孔繁博,等. 美式看跌期权定价问题的有限差分直接法[J]. 重庆理工大学学报, 2011, 25(11):106-110.ZHONG J M, CHAI Y Z, KONG F B, et al. Finite difference direct method for American put option[J]. Journal of Chongqing Universityof Technology, 2011, 25(11):106-110. [10] 王丽萍, 许作良, 马青华, 等. 美式看跌期权定价的两种有限差分格式[J]. 数学的实践与认识, 2012, 42(24):33-38.WANG L P, XU Z L, MA Q H, et al. Two kinds of finite difference scheme of pricing for American put options[J]. Mathematics in Practice and Theory, 2012, 42(24):33-38. [11] YANG S L, LEE S T, SUN H W. Boundary value methods with the Crank-Nicolson preconditioner for pricing options in the jump-diffusion model[J]. International Journal of Computer Mathematics, 2011, 88(8):1730-1748. [12] SPOTZ W F, CAREY G F. Extension of high-order compact schemes to time-dependent problems[J]. Numerical Methods for Partial Ditierential Equations, 2001, 17(6):657-672. [13] COTTLE R W, PANG J S, STONE R E. The linear complementarity problem[M]. London:Academic Press, 1992. [14] IKONEN S, TOIVANEN J. Operator splitting methods for American option pricing[J]. Applied Mathematics Letters, 2004, 17(7):809-814. [15] ZHU Y L, WU X, CHERN I L. Derivatives securities and difference methods[M]. New York:Springer, 2004. [16] 王建华, 董志华. 奇点分离法在美式期权定价中的应用[J]. 武汉理工大学学报, 2010, 32(5):803-814.WANG J H, DONG Z H. Application of singularity-separating method in pricing American option[J]. Journal of Wuhan University Oftechnology, 2010, 32(5):803-814. |
[1] | 岑达康, 汪志波. 分数阶捕食者—食饵模型的变分迭代法[J]. 广东工业大学学报, 2022, 39(02): 62-65. |
|