广东工业大学学报 ›› 2019, Vol. 36 ›› Issue (01): 1-9.doi: 10.12052/gdutxb.180135

• 可拓论坛 •    下一篇

面向问题智能处理的基元-因素空间模型研究

李兴森1, 许立波2, 刘海涛3   

  1. 1. 广东工业大学 可拓学与创新方法研究所, 广东 广州 510006;
    2. 浙江大学宁波理工学院 计算机与数据工程学院中澳智能计算与数据管理研究中心, 浙江 宁波 315100;
    3. 辽宁工程技术大学 理学院, 辽宁 阜新 125105
  • 收稿日期:2018-10-12 出版日期:2019-01-25 发布日期:2018-12-05
  • 作者简介:李兴森(1968-),男,教授,博士,主要研究方向为可拓学与智能创新.
  • 基金资助:
    国家自然科学基金资助项目(71271191);浙江省自然科学基金资助项目(LY18F020001,LY16G010010);教育部人文社会科学研究项目(18YJAZH049)

A Research on Problem Oriented Intelligent Processing Model by Basic-Element and Factor Space

Li Xing-sen1, Xu Li-bo2, Liu Hai-tao3   

  1. 1. Institute of Extenics and Innovation Methods, Guangdong University of Technology, Guangzhou 510006, China;
    2. Research Center of Intelligent Computing and Data Management, Zhejiang University Ningbo Institute of Technology, Ningbo, 315100, China;
    3. College of Science, Liaoning Technical University, Fuxin 123000, China
  • Received:2018-10-12 Online:2019-01-25 Published:2018-12-05

摘要: 互联网已成为获取信息的重要来源,但仅依靠信息搜索引擎等现有技术仍难以从海量信息中智能化挖掘知识为解决问题服务,面向问题处理的互联网知识搜索的模型与算法等问题一直未得到有效解决.知识搜索引擎要实现智能化解决问题的服务,关键是必须研究面向问题处理的互联网信息的智能重构模型.基元-因素空间模型以可拓学基元理论、因素空间理论和智能知识管理理论为基础,交叉研究从互联网海量信息资源中抽取对象、属性和量值,重组互联网信息,自动构建领域基元的方法及从领域信息中挖掘特定问题的因素空间以获取领域知识的智能算法.在动态基元信息、专家经验知识与因素空间融合的模式与算法基础上,开发模拟仿真软件以验证动态知识基元及因素库协同进行互联网信息重组的理论与方法,为利用互联网生成解决问题的创新策略和研发新一代面向问题处理的知识搜索引擎提供理论基础和新的方法支撑.

关键词: 可拓学, 因素空间, 信息结构, 知识挖掘, 基元

Abstract: The Internet has become an important way of obtaining information, but it is still difficult to provide aids to problem solving. Problem solving oriented knowledge searching in the Internet has not been solved thoroughly. The key factor is the reconstruction of web information. The combination of network and intelligence will bring the knowledge-based application of web information into a new stage. A cross-study is proposed on the novel hybrid method of extracting the objects, attributes, and values from the mass information of internet with simulation and automatically building the field basic elements on macro information based on Extenics, factor space theory and intelligent knowledge. In addition, a lot of future research directions are put forward, such as on intelligent algorithm which collects correlative factors of special problem from the field of information for acquiring domain knowledge. The research may provide theoretical basis and new methods for using the internet to generate the innovative strategy of problem solving and examine a new generation of problem-solving oriented knowledge search engine.

Key words: Extenics, factor space, information structure, knowledge mining, basic-element

中图分类号: 

  • TP315
[1] RAHMAN M. Search engines going beyond keyword search:a survey[J]. International Journal of Computer Applications, 2013, 75(17):1-8
[2] 张清华, 幸禹可, 周玉兰. 基于粒计算的增量式知识获取方法[J]. 电子与信息学报, 2011, 33(2):435-441 ZHANG Q H, XING Y K, ZHOU Y L. The incremental knowledge acquisition algorithm based on granular computing[J]. Journal of Electronics & Information Technology, 2011, 33(2):435-441
[3] 汪培庄, SUGENO M. 因素场与模糊集的背景结构[J]. 模糊数学, 1982(2):45-54 WANG P Z, SUGENO M. The background structure of factor field and fuzzy sets[J]. Fuzzy Mathematics, 1982(2):45-54
[4] 汪培庄. 因素空间与因素库[J]. 辽宁工程技术大学学报:自然科学版, 2013, 32(10):1-8 WANG P Z. Factor spaces and factor data-bases[J]. Journal of Liaoning Technical University (Natural science), 2013, 32(10):1-8
[5] 汪培庄. 因素空间与数据科学[J]. 辽宁工程技术大学学报:自然科学版, 2015, 34(2):273-280 WANG P Z. Factor space and data science[J]. Journal of Liaoning Technical university (Natural science), 2015, 34(2):273-280
[6] WANG P Z, LIU Z L, SHI Y, et al. Factor space, the theoretical base of data science[J]. Annals of Data Science, 2014, 1(2):233-251
[7] 汪培庄, 李洪兴. 知识表示的数学理论[M]. 天津:天津科技出版社, 1994.
[8] 刘增良, 刘有才. 因素神经网络理论及实现策略研究[M]. 北京:北京师范大学出版社, 1992.
[9] ZENG W Y, LI D Q, WANG P Z. Variable weight decision making and balance function analysis based on factor space[J]. International Journal of Information Technology & Decision Making, 2016, 15(5):999-1014
[10] ZHOU L, SUN K, LI H. Multifactorial decision making based on type-2 fuzzy sets and factor space approach[J]. Journal of Intelligent & Fuzzy Systems, 2016, 30(4):2257-2266
[11] 汪华东, 郭嗣琮. 基于因素空间反馈外延外包络的DFE决策[J]. 计算机工程与应用, 2015, 51(15):148-152 WANG H D, GUO S Z. DFE decision-making based on outer-enveloping of feedback extension in factor spaces[J]. Computer Engineering and Applications, 2015, 51(15):148-152
[12] 崔铁军, 马云东. 因素空间的属性圆定义及其在对象分类中的应用[J]. 计算机工程与科学, 2015, 31(11):2169-2174 CUI T J, MA Y D. Definition of attribute circle in factor space and its application in object classification[J]. Computer Engineering & Science, 2015, 31(11):2169-2174
[13] 蔡文. 可拓集合和不相容问题[J]. 科学探索学报, 1983(1):83-97 CAI W. Extension set and non-compatible problem[J]. Science Exploration, 1983(1):83-97
[14] 蔡文, 石勇. 可拓学的科学意义与未来发展[J]. 哈尔滨工业大学学报, 2006, 38(7):1079-1086 CAI W, SHI Y. Extenics:its significance in science and prospects in application[J]. Journal of Harbin Institute of Technology, 2006, 38(7):1079-1086
[15] 涂序彦. 开拓新领域研究新方法[J]. 科技导报, 2014, 32(36):117 TU X Y. Develop new research methods in new fields[J]. Science & Technology Review, 2014, 32(36):117
[16] 钟义信. 评"可拓学"[J]. 科学通报, 2013(13):1188-1189 ZHONG Y X. Comments on "extenics"[J]. Chinese Science Bulletin, 2013(13):1188-1189
[17] 杨春燕, 蔡文. 可拓学[M]. 北京:科学出版社, 2013.
[18] 李幼平. 可拓学:沟通自然科学与社会科学的桥梁[J]. 科技导报, 2014, 32(36):1, 3
[19] 陈文伟, 杨春燕, 黄金才. 可拓知识与可拓知识推理[J]. 哈尔滨工业大学学报, 2006, 38(7):1094-1096 CHEN W W, YANG C Y, HUANG J C. Extension knowledge and extension knowledge reasoning[J]. Journal of Harbin Institute of Technology, 2006, 38(7):1094-1096
[20] 杨春燕, 汤龙, 等. 中国人工智能学会系列研究报告-中国原创学科可拓学发展报告2016[R]. 北京:北京邮电大学出版社, 2017.
[21] SMARANDACHE F. Generalizations of the distance and dependent function in extenics to 2D, 3D, and n-D[J]. Global Journal of Science Frontier Research, 2012, 12(8):47-60
[22] SANDRU O I, LUIGE V, PAUL S. Multidimensional extenics theory[J]. University Politehnica of Bucharest Scientific Bulletin-Series A:Applied Mathematics and Physics, 2013, 75(1):3-12
[23] VLADAREANU V, SMARANDACHE F, VLADAREANU L. Extension hybrid force-position robot control in higher dimensions[J]. Applied Mechanics and Materials, 2013(332):260-269
[24] 蔡文, 杨春燕, 陈文伟, 等. 可拓集与可拓数据挖掘[M]. 北京:科学出版社, 2008.
[25] LI X S, ZHANG H, ZHU Z, et al. An intelligent transformation knowledge mining method based on extenics[J]. Journal of Internet Technology, 2013, 14(2):315-325
[26] 崔春生, 赖锴, 陈婕. 基于基元理论的内容推荐算法研究[J]. 系统科学与数学, 2015, 35(10):1209-1218 CUI C S, LAI K, CHEN J. Research on content-based recommendation of ecbased on basic element theory[J]. Journal of Systems Science and Mathematical Sciences, 2015, 35(10):1209-1218
[27] 李兴森, 石勇, 张玲玲. 从信息爆炸到智能知识管理[M]. 北京:科学出版社, 2010.
[28] LI X S, LI L, CHEN Z. Toward extenics-based innovation model on intelligent knowledge management[J]. Annals of Data Science, 2014, 1(1):127-148
[29] LI X S, TIAN Y, SMARANDACHE F, ALEX R. An extension collaborative innovation model in the context of big data[J]. International Journal of Information Technology & Decision Making, 2015, 14(1):69-91
[30] 杨春燕, 蔡文. 基于可拓学的创意生成与生产研究[J]. 广东工业大学学报, 2016, 33(1):12-16 YANG C Y, CAI W. Generating creative ideas for production based on extenics[J]. Journal of Guangdong University of Technology, 2016, 33(1):12-16
[31] 余志伟, 李兴森. 基元库构建模型及其应用研究[J]. 广东工业大学学报, 2015, 32(3):5-9 YU Z W, LI X S. Modeling of basic-element and its application[J]. Journal of Guangdong University of Technology, 2015, 32(3):5-9
[32] 徐慧, 陈宏伟, 宗欣露. 基于可拓论的SDN管理信息语义不匹配问题研究[J]. 广东工业大学学报, 2017, 34(4):17-21 XU H, CHEN H W, ZONG X L. Semantic-mismatching of management information for software-defined networking based on extension theory[J]. Journal of Guangdong University of Technology, 2017, 34(4):17-21
[33] 李文军, 杨春燕. 基于事元理论的用户需要与产品功能的形式化研究[J]. 广东工业大学学报, 2017, 34(6):1-8 LI W J, YANG C Y. A Formal research on user needs and functions of products based on affair-element theory[J]. Journal of Guangdong University of Technology, 2017, 34(6):1-8
[34] 陶星, 李卫华, 汪中飞. 基于知网的可拓领域信息元库的构建方法[J]. 智能系统学报, 2015, 10(5):790-796 TAO X, LI W H, WANG Z F. Construction of howNet-based extendable domain information element base[J]. CAAI Transactions on Intelligent Systems, 2015, 10(5):790-796
[35] 王景丽, 李兴森. 统一内容标签的基元表达及其构建策略初探[J]. 广东工业大学学报, 2014, 31(2):14-20 WANG J L, LI X S. On basic element expression and construction of the unified content label[J]. Journal of Guangdong University of Technology, 2014, 31(2):14-20
[36] LI Q X, LI X S. The method to construct elementary dependent function on single interval[J]. Key Engineering Materials, 2011, 476:651-654
[37] GUDIVADA V N, RAO D, PARIS J. Understanding search engine optimization[J]. Computer, 2015, 48(10):145-154
[38] HONG J, HE Z, BELL D A. An evidential approach to query interface matching on the deep web[J]. Information Systems, 2010, 35(2):140
[39] KIM K, TSE E. Inferior search engine's optimal choice:knowledge-sharing service versus search quality[J]. Electronic Commerce Research and Applications, 2014, 13(6):387-401
[40] BALSOY O, JIN Y, AYDIN G. Automating metadata web service deployment for problem solving environments[J]. Future Generation Computer Systems, 2005, 21(6):910-919
[41] CHEN L, SHADBOLT N R, GOBLE C. Managing semantic metadata for web/grid services[J]. International Journal of Web Services Research, 2006, 3(4):73-94
[42] 郭卫宁, 司莉. 国外语义搜索引擎调查与分析[J]. 图书情报工作, 2013, 57(23):121-129 GUO W N, SI L. Investigation and analysis on semantic search engines abroad[J]. Library and Information Service, 2013, 57(23):121-129
[43] LAI L F, WU C C, LIN P Y, et al. Developing a fuzzy search engine based on fuzzy ontology and semantic search[J]. IEEE International Conference on Fuzzy Systems, 2011:2684-2689
[44] SHAH D, SOMAIYA J, NAIR S, et al. Fuzzy semantic search engine[J]. International Journal of Computer Applications, 2014, 107(15):25-27
[45] TAHA K, ELMASRI R. BusSEngine:a business search engineH[J]. Knowledge and Information Systems, 2010, 23(2):153-197
[46] 李江华, 时鹏, 胡长军. 本体搜索与排序方法研究综述[J]. 小型微型计算机系统, 2013, 34(10):2396-2406 LI J H, SHI P, HU C J. Overview of ontology search and ranking[J]. Journal of Chinese Computer Systems, 2013, 34(10):2396-2406
[47] MYLONAS P, VALLET D, CASTELLS P, et al. Personalized information retrieval based on context and ontological knowledge[J]. The Knowledge Engineering Review, 2008, 23(1):73-100
[48] MIZZARO S, VASSENA L. A social approach to context-aware retrieval[J]. World Wide Web, 2011, 14(4):377-405
[49] 刘剑, 许洪波, 贾岩涛, 等. 面向智能搜索的动态知识网络建模[J]. 电信科学, 2014, 30(10):64-70 LIU J, XU H B, JIA Y T, et al. Dynamic knowledge network modeling orient to intelligent search[J]. Telecommunications Science, 2014, 30(10):64-70
[50] PETERS S, RUECKEMANN C P, SANDER-BEUERMANN W. A new approach towards vertical search engines-intelligent focused crawling and multilingual semantic techniques[J]. Webist 2010:Proceedings of the 6th International Conference on Web Information Systems and Technologies, 2012:181-186.
[51] TAHA K, ELMASRI R. XCDSearch:an XML context-driven search engine[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(12):1781-1796
[52] RODRIGUEZ-GARCIA M A, RAFAEL V, FRANCISCO G. Ontology-based annotation and retrieval of services in the cloud[J]. Knowledge-Based Systems, 2014, 56:15-25
[53] KOO D M, CHOI Y Y. Knowledge search and people with high epistemic curiosity[J]. Computers in Human Behavior, 2010, 26(1):12-22
[54] SHROFF, GAUTAM. The intelligent web:search, smart algorithms, and big data[J]. Oxford University Press, 2013.
[55] 陈震, 曹军威. 信息中心网络[M]. 北京:清华大学出版社, 2013.
[56] HONG, JUNE S. Development of constraint-based problem solving framework for the semantic web[J]. Entrue Journal of Information Technology, 2011, 10(2):239-250
[57] ANNELIES R, SCHELLENS T, DE W B. Promoting metacognitive regulation through collaborative problem solving on the web:when scripting does not work[J]. Computers in Human Behavior, 2016, 58:325-342
[1] 高红, 郭媛媛, 刘行. 基于分合链方法的图的意大利支配数研究[J]. 广东工业大学学报, 2023, 40(02): 1-4.
[2] 陈锦成, 成思源, 杨雪荣. 基于功能需求与可拓理论的专利群规避设计[J]. 广东工业大学学报, 2023, 40(02): 5-14,29.
[3] 王金广, 汤敏聪, 杨振昊, 王昊. 化妆瓶塑料回收处理系统的可拓设计创意生成研究[J]. 广东工业大学学报, 2022, 39(06): 130-140.
[4] 吴嘉健, 杨春燕. TRIZ中流分析的可拓流模型建立方法研究[J]. 广东工业大学学报, 2022, 39(02): 12-18.
[5] 陈美蓉, 江帆, 黄浩翔, 黄海涛, 黄玉琴. 物场-可拓创新方法研究及应用[J]. 广东工业大学学报, 2022, 39(02): 19-25,90.
[6] 王涛, 李文杰. 基于可拓理论的传统民居建筑改造创新设计研究—以北京市房山区宝水村为例[J]. 广东工业大学学报, 2022, 39(02): 26-31.
[7] 陈锦成, 成思源, 杨雪荣. 基于功能分析与可拓理论的再设计方法[J]. 广东工业大学学报, 2022, 39(02): 32-38.
[8] 付晓莉, 仝小冬, 尚会超, 丁同锐, 崔汝晨. 情感化造型基元的拟合模型[J]. 广东工业大学学报, 2022, 39(02): 48-54.
[9] 葛标标, 杨春燕. 科学效应与可拓变换、传导效应的关系研究[J]. 广东工业大学学报, 2021, 38(06): 91-97.
[10] 张紫然, 李兴森, 郭恒发, 王昊. 解决设计问题的可拓创意生成方法——以区庄地铁站地面烟蒂问题为例[J]. 广东工业大学学报, 2021, 38(06): 103-110.
[11] 汪培庄, 曾繁慧, 孙慧, 李兴森, 郭建威, 孟祥福, 何静. 知识图谱的拓展及其智能拓展库[J]. 广东工业大学学报, 2021, 38(04): 9-16.
[12] 李千静, 成思源, 陈晓菁, 杨雪荣, 陈斌. 基于可拓学与CAI技术的无尘黑板专利规避设计[J]. 广东工业大学学报, 2021, 38(02): 20-25,47.
[13] 崔铁军, 李莎莎. 系统故障演化过程的可拓学原理[J]. 广东工业大学学报, 2020, 37(05): 1-6.
[14] 郭恒发, 李兴森, 刘仁湖. 融合可拓学与TRIZ的产品设计创意生成方法——以手机充电器产品设计为例[J]. 广东工业大学学报, 2020, 37(05): 7-12.
[15] 李仔浩, 杨春燕, 李文军. 可拓创新方法在发电机创新设计中的应用[J]. 广东工业大学学报, 2020, 37(01): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!