广东工业大学学报 ›› 2019, Vol. 36 ›› Issue (03): 32-38.doi: 10.12052/gdutxb.180161

• 综合研究 • 上一篇    下一篇

基于改进的多时间尺度特征排列熵的心率变异性分析研究

雷瑞生, 凌永权   

  1. 广东工业大学 信息工程学院, 广东 广州 510006
  • 收稿日期:2018-12-07 出版日期:2019-05-09 发布日期:2019-04-04
  • 通信作者: 凌永权(1973-),男,教授,博士,博士生导师,主要研究方向为最优化理论研究与时频分析等.E-mail:yongquanling@gdut.edu.cn E-mail:yongquanling@gdut.edu.cn
  • 作者简介:雷瑞生(1993-),男,硕士研究生,主要研究方向为医疗信号处理、机器学习、数据挖掘.
  • 基金资助:
    国家自然科学基金资助项目(U1701266,61372173,61471132,61671163);广东省自然科学基金资助项目(2014A030310346);广东省科技计划资助项目(2015A030401090)

A Heart Rate Variability Analysis via Modified Multi-time Scale Permutation Entropy

Lei Rui-sheng, Ling Bingo Wing-Kuen   

  1. School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2018-12-07 Online:2019-05-09 Published:2019-04-04

摘要: 为了分析不同生理状态下人体心率变异性的差异性,并弥补传统心率变异性分析方法时间尺度特征单一的不足,本文结合了互补式集合平均经验模态分解和改进的排列熵算法对心率变异时间序列进行了具有多时间尺度特征的排列熵分析,并计算得到反映心率变异显著差异性的指标CEEMD-mPE.最后基于MIT-BIH心率失常数据库的实验结果分析表明,本文所使用的心率变异性分析方法相比于其他基于熵的分析方法具有更优异的表现.

关键词: 互补式集合平均经验模态分解, 本征模态函数, 排列熵, 心率变异性

Abstract: For analyzing the differences in human heart rate variability under different physiological conditions, and overcoming the problem of analyzing with only single time scale in traditional heart rate variability analysis methods, an HRV analysis method combining the complementary ensemble empirical mode decomposition and modified permutation entropy algorithm is proposed to obtain an indicator named CEEMD-mPE for measuring the obvious differences from HRV time series. The experimental results based on the MIT-BIH arrhythmia database show that our proposed HRV analysis method outperforms the other existing methods based on entropy.

Key words: complementary ensemble empirical mode decomposition, intrinsic mode functions, permutation entropy, heart rate variability

中图分类号: 

  • TP301
[1] SAUL J. Beat-to-beat variations of heart rate reflect modulation of cardiac autonomic outflow[J]. Physiology, 1990, 5(1):32-37
[2] MALIK M, BIGGER J T, CAMM A J, et al. Heart rate variability:Standards of measurement, physiological interpretation, and clinical use[J]. European Heart Journal, 1996, 17(3):354-381
[3] PEÑA M A, ECHEVERRÍA J C, GARCÍA M T, et al. Applying fractal analysis to short sets of heart rate variability data[J]. Medical and Biological Engineering and Computing, 2009, 47(7):709-717
[4] HE L, WANG J, ZHANG L, et al. Decreased fractal dimension of heart rate variability is associated with early neurological deterioration and recurrent ischemic stroke after acute ischemic stroke[J]. Journal of the Neurological Sciences, 2018, 396(November 2018):42-47
[5] CARVAJAL R, WESSEL N, VALLVERDÚ M, et al. Correlation dimension analysis of heart rate variability in patients with dilated cardiomyopathy[J]. Computer Methods and Programs in Biomedicine, 2005, 78(2):133-140
[6] RAWAL K, SAINI B S, SAINI I. Adaptive correlation dimension method for analysing heart rate variability during the menstrual cycle[J]. Australasian Physical and Engineering Sciences in Medicine, 2015, 38(3):509-523
[7] UDHAYAKUMAR R K, KARMAKAR C, PALANISWAMI M. Approximate entropy profile:a novel approach to comprehend irregularity of short-term HRV signal[J]. Nonlinear Dynamics, 2017, 88(2):823-837
[8] CARRICARTE NARANJO C, SANCHEZ-RODRIGUEZ L M, BROWN MARTÍNEZ M, et al. Permutation entropy analysis of heart rate variability for the assessment of cardiovascular autonomic neuropathy in type 1 diabetes mellitus[J]. Computers in Biology and Medicine, 2017, 86(409):90-97
[9] UDHAYAKUMAR R K, KARMAKAR C, PALANISWAMI M. Understanding irregularity characteristics of short-term HRV signals using sample entropy profile[J]. IEEE Transactions on Biomedical Engineering, IEEE, 2018, 65(11):2569-2579
[10] BOLEA J, BAILÓN R, PUEYO E. On the standardization of approximate entropy:multidimensional approximate entropy index evaluated on short-term HRV time series[EB/OL]. Complexity, 2018.[2019-03-22]. https://doi.org/10.1155/2018/4953273.
[11] YEH J, SHIEH J, HUANG N E. Complementary ensemble empirical mode decomposition:A novel noise enhanced data analysis method[J]. Advances in Adaptive Data Analysis, 2010, 2(2):135-156
[12] BIAN C, QIN C, MA Q D Y, et al. Modified permutation-entropy analysis of heartbeat dynamics[J]. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics, 2012, 85(2):1-7
[13] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. The Royal Society, 1998, 454(1971):903-995
[14] BANDT C, POMPE B. Permutation entropy:a natural complexity measure for time series[J]. Physical Review Letters, 2002, 88(17):174102
[15] MOODY G B, MARK R G. The impact of the MIT-BIH arrhythmia database[J]. IEEE Engineering in Medicine and Biology Magazine, 2001, 20(3):45-50
[16] WU Z, HUANG N E. Ensemble empirical mode decomposition:a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1):1-41
[17] GOLDBERGER A L, AMARAL L A, GLASS L, et al. PhysioBank, PhysioToolkit, and PhysioNet:components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101(23):e215-e220
[18] Association for the Advancement of Medical Instrumentation. Testing and reporting performance results of cardiac rhythm and st segment measurement algorithms[M]. USA:ANSI/AAMI EC38, 1998.
[1] 张锐, 吕俊. 基于分离结果信噪比估计与自适应调频网络的单通道语音分离技术[J]. 广东工业大学学报, 2023, 40(02): 45-54.
[2] 刘冬宁, 王子奇, 曾艳姣, 文福燕, 王洋. 基于复合编码特征LSTM的基因甲基化位点预测方法[J]. 广东工业大学学报, 2023, 40(01): 1-9.
[3] 徐伟锋, 蔡述庭, 熊晓明. 基于深度特征的单目视觉惯导里程计[J]. 广东工业大学学报, 2023, 40(01): 56-60,76.
[4] 刘冬宁, 郑楚楚. 冷却时间约束多对多任务分配及其优化[J]. 广东工业大学学报, 2021, 38(05): 10-15.
[5] 张巍, 仝茹, 吴诗珏, 王子奇, 滕少华. 基于KD45闭包的群组角色指派研究[J]. 广东工业大学学报, 2021, 38(04): 26-34.
[6] 吕舒园, 刘富春, 赵锐, 邓秀勤, 崔洪刚. 分布式离散事件系统的模式故障预测研究[J]. 广东工业大学学报, 2021, 38(01): 54-63.
[7] 郝志峰, 黎伊婷, 蔡瑞初, 曾艳, 乔杰. 基于因果模型的社交网络用户购物行为研究[J]. 广东工业大学学报, 2020, 37(03): 1-8.
[8] 洪英汉, 郝志峰, 麦桂珍, 陈平华. 基于低阶条件独立测试的因果网络结构学习方法[J]. 广东工业大学学报, 2019, 36(05): 14-19.
[9] 陈鹤峰, 伍乃骐. 基于Petri网可达性和结构的最大许可控制器设计[J]. 广东工业大学学报, 2019, 36(04): 1-9.
[10] 石聪聪, 刘富春. 模糊离散事件系统基于模式的故障诊断[J]. 广东工业大学学报, 2019, 36(01): 35-41.
[11] 黄田安, 程良伦, 黄思猛. 制造物联网生产过程工序流波动分析方法研究[J]. 广东工业大学学报, 2019, 36(01): 57-62.
[12] 刘冬宁, 刘统武, 宋静静, 侯艳. 面向基站代维人员分工协作优化的多重指派研究[J]. 广东工业大学学报, 2018, 35(06): 69-76.
[13] 叶彬彬, 刘富春. 随机离散事件系统的故障预测[J]. 广东工业大学学报, 2018, 35(06): 83-89.
[14] 郑三强, 韩晓卓. 多因素制约下的SIR传染病模型的元胞自动机仿真模拟研究[J]. 广东工业大学学报, 2018, 35(05): 51-59.
[15] 周怡璐, 王振友, 李叶紫, 李锋. MOEA/D聚合函数的二次泛化及其优化性能分析[J]. 广东工业大学学报, 2018, 35(04): 37-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!