广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (06): 26-31.doi: 10.12052/gdutxb.200011

• • 上一篇    下一篇

基于多分辨率学习卷积神经网络的磁共振图像超分辨率重建

夏皓1, 蔡念1, 王平2, 王晗3   

  1. 1. 广东工业大学 信息工程学院,广东 广州 510006;
    2. 广州医科大学附属第一医院,广东 广州 510120;
    3. 广东工业大学 机电工程学院,广东 广州 510006
  • 收稿日期:2020-01-10 出版日期:2020-11-02 发布日期:2020-11-02
  • 通信作者: 蔡念(1976-),男,教授,主要研究方向为机器学习、机器视觉、数字信号处理等,E-mail:cainian@gdut.edu.cn E-mail:cainian@gdut.edu.cn
  • 作者简介:夏皓(1994-)男,硕士研究生,主要研究方向为深度学习、医学图像处理等
  • 基金资助:
    广东省科技重大专项项目(2017B090911012);广州市民生科技攻关计划重大专项项目(201803010065);季华实验室项目(X190071UZ190)

Magnetic Resonance Image Super-Resolution via Multi-Resolution Learning

Xia Hao1, Cai Nian1, Wang Ping2, Wang Han3   

  1. 1. School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China;
    2. Department of Hepatobiliary Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China;
    3. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2020-01-10 Online:2020-11-02 Published:2020-11-02

摘要: 高分辨率磁共振图像对于医学诊断具有重要意义,本文提出一种多分辨率学习卷积神经网络,并应用于磁共振图像超分辨率。网络是一种新型深度残差网络,包含用于特征提取的残差单元、多分辨率上采样的反卷积层以及多分辨率学习层。设计的网络在低分辨率图像空间中实现图像超分辨率,采用多分辨率上采样实现多个残差单元信息融合并加速网络,多分辨率学习能够自适应地确定各分辨率上采样的高维特征图对磁共振图像超分辨重建的贡献度。实验表明,论文提出的方法能够很好地超分辨率重建磁共振图像,优于最新的深度学习方法。

关键词: 卷积神经网络, 多分辨率学习, 磁共振图像, 超分辨率重建

Abstract: High-resolution magnetic resonance images are of great significance for medical diagnosis. A convolutional neural network with multi-resolution learning is proposed for magnetic resonance image (MR) super-resolution. The network is an improved deep residual network, which involves residual units for feature extraction, a deconvolution layer for multi-resolution up-sampling, and a multi-resolution learning layer. The proposed network performs the super-resolution task in the low-resolution space, which can accelerate the network. Multi-resolution upsampling is put forward to integrate multiple residual unit information and to accelerate the network. Multi-resolution learning can adaptively determine the contributions of these upsampled high-dimensional feature maps to high-resolution MR image reconstruction. Experiment results indicate that the proposed method can achieve a good super-resolution reconstruction performance for magnetic resonance images, which is superior to the state-of-the-art deep learning methods.

Key words: convolutional neural network, multi-resolution learning, magnetic resonance image, super-resolution reconstruction

中图分类号: 

  • TP391.4
[1] SHI F, CHENG J, WANG L, et al. LRTV: MR image super-resolution with low-rank and total variation regularizations [J]. IEEE Transactions on Medical Imaging, 2015, 34(12): 2459-2466.
[2] PLENGE E, POOT D H J, BERNSEN M, et al. Super-resolution methods in MRI: Can they improve the trade-off between resolution, signal-to-noise ratio, and acquisition time? [J]. Magnetic Resonance in Medicine, 2012, 68(6): 1983-1993.
[3] WU J, CAI N, LI F, et al. Automatic detonator code recognition via deep neural network [J]. Expert Systems with Applications, 2020, 145: 113121.
[4] FU X, CAI N, HUANG K, et al. M-net: a novel u-net with multi-stream feature fusion and multi-scale dilated convolutions for bile ducts and hepatolith segmentation [J]. IEEE Access, 2019, 7: 148645-148657.
[5] WU J, CAI N, CHEN W, et al. Automatic detection of hardhats worn by construction personnel: a deep learning approach and benchmark dataset [J]. Automation in Construction, 2019, 106: 102894.
[6] 翁韶伟, 彭一航, 危博, 等. 基于Inception-V3网络的双阶段数字视频篡改检测算法[J]. 广东工业大学学报, 2019, 36(6): 16-23.
WENG S W, PENG Y H, WEI B, et al. A two-stage-video forgery based on inception-v3 network [J]. Journal of Guangdong University of Technology, 2019, 36(6): 16-23.
[7] 高俊艳, 刘文印, 杨振国. 结合注意力与特征融合的目标跟踪[J]. 广东工业大学学报, 2019, 36(4): 18-23.
GAO J Y, LIU W Y, YANG Z G. Object tracking combined with attention and feature fusion [J]. Journal of Guangdong University of Technology, 2019, 36(4): 18-23.
[8] 叶武剑, 高海健, 翁韶伟, 等. 基于CGAN网络的二阶段式艺术字体渲染方法[J]. 广东工业大学学报, 2019, 36(3): 47-55.
YE W J, GAO H J, WENG S W, et al. A two-stage effect rendering method for art font based on CGAN network [J]. Journal of Guangdong University of Technology, 2019, 36(3): 47-55.
[9] HARIS M, SHAKHNAROVICH G, UKITA N. Deep back-projection networks for super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 1664-1673.
[10] PHAM C H, DUCOURNAU A, FABLET R, et al. Brain MRI super-resolution using deep 3D convolutional networks[C]//2017 IEEE 14th International Symposium on Biomedical Imaging. Melbourne: IEEE, 2017: 197-200.
[11] DONG C, LOY C C, HE K, et al. Learning a deep convolutional network for image super-resolution[C]//European Conference on Computer Vision. Amsterdam: Springer, Cham, 2014: 184-199.
[12] DONG C, LOY CC, HE K, et al. Image super-resolution using deep convolutional networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(2): 295-307.
[13] OKTAY O, BAI W, LEE M, et al. Multi-input cardiac image super-resolution using convolutional neural networks[C]//International Conference on Medical Image Computing and Computer-assisted Intervention. Istanbul: Springer, Cham, 2016: 246-254.
[14] GIANNAKIDIS A, OKTAY A O, KEEGAN J. Super-resolution reconstruction of late gadolinium cardiovascular magnetic resonance images using a residual convolutional neural network 25th Scientific Meeting of the Int[C]//International Society for Magnetic Resonance in Medicine. Hawaii: [s.n.], 2017.
[15] KIM J, KWON LEE J, MU LEE K. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1646-1654.
[16] SHI J, LI Z, YING S, et al. MR image super-resolution via wide residual networks with fixed skip connection [J]. IEEE Journal of Biomedical and Health Informatics, 2018, 23(3): 1129-1140.
[17] MCDONAGH S, HOU B, ALANSARY A, et al. Context-sensitive super-resolution for fast fetal magnetic resonance imaging[C]//Molecular Imaging, Reconstruction and Analysis of Moving Body Organs, and Stroke Imaging and Treatment. Canada: Springer, Cham, 2017: 116-126.
[18] DONG C, LOY C C, TANG X. Accelerating the super-resolution convolutional neural network[C]//European Conference on Computer Vision. Amsterdam: Springer, Cham, 2016: 391-407.
[19] TANNO R, WORRALL D E, GHOSH A, et al. Bayesian image quality transfer with CNNs: exploring uncertainty in dMRI super-resolution[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Istanbul: Springer, Cham, 2017: 611-619.
[20] SHI W, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1874-1883.
[21] TAI Y, YANG J, LIU X. Image super-resolution via deep recursive residual network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE, 2017: 3147-3155.
[22] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[23] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity [J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
[24] HE K, ZHANG X, REN S, et al. Delving deep into rectifiers: Surpassing human-level performance on image net classification[C]//Proceedings of the IEEE International Conference on Computer Vision. Boston: IEEE, 2015: 1026-1034.
[1] 谢国波, 林立, 林志毅, 贺笛轩, 文刚. 基于YOLOv4-MP的绝缘子爆裂缺陷检测方法[J]. 广东工业大学学报, 2023, 40(02): 15-21.
[2] 章云, 王晓东. 基于受限样本的深度学习综述与思考[J]. 广东工业大学学报, 2022, 39(05): 1-8.
[3] 黄剑航, 王振友. 基于特征融合的深度学习目标检测算法研究[J]. 广东工业大学学报, 2021, 38(04): 52-58.
[4] 马少鹏, 梁路, 滕少华. 一种轻量级的高光谱遥感图像分类方法[J]. 广东工业大学学报, 2021, 38(03): 29-35.
[5] 战荫伟, 朱百万, 杨卓. 车辆颜色和型号识别算法研究与应用[J]. 广东工业大学学报, 2020, 37(04): 9-14.
[6] 曾碧卿, 韩旭丽, 王盛玉, 徐如阳, 周武. 基于双注意力卷积神经网络模型的情感分析研究[J]. 广东工业大学学报, 2019, 36(04): 10-17.
[7] 杨孟军, 苏成悦, 陈静, 张洁鑫. 基于卷积神经网络的视觉闭环检测研究[J]. 广东工业大学学报, 2018, 35(05): 31-37.
[8] 陈旭, 张军, 陈文伟, 李硕豪. 卷积网络深度学习算法与实例[J]. 广东工业大学学报, 2017, 34(06): 20-26.
[9] 叶向荣, 刘怡俊, 陈云华, 熊炯涛. 基于L1/2自适应稀疏正则化的图像重建算法[J]. 广东工业大学学报, 2017, 34(06): 43-48.
[10] 申小敏, 李保俊, 孙旭, 徐维超. 基于卷积神经网络的大规模人脸聚类[J]. 广东工业大学学报, 2016, 33(06): 77-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!