广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (01): 63-70.doi: 10.12052/gdutxb.210014
杨运龙, 梁路, 滕少华
Yang Yun-long, Liang Lu, Teng Shao-hua
摘要: 深度卷积神经网络对高分辨率遥感影像进行语义分割时, 对图像的下采样会造成物体边缘模糊, 使分割结果在边缘附近划分不清晰, 误分类较多。通过在网络中增加边缘信息可以提升模型对遥感图像的分割能力。因此, 提出了一个用于语义分割的双路网络模型, 增加一路边缘网络学习目标的边缘特征, 并利用边缘特征对分割特征进行细化。同时, 作为一个多任务学习模型, 分割网络和边缘网络可以同时进行训练。本文在ISPRS Potsdam和ISPRS Vaihingen数据集上证明了双路网络模型的有效性, 对比多种语义分割模型, 均取得了领先的效果。
中图分类号:
[1] YAO XW, HAN J W, CHENG G, et al. Semantic annotation of high-resolution satellite images via weakly supervised learning [J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6): 3660-3671. [2] MARTHA T R, KERLE N, WESTEN C J, et al. Segment optimization and data-driven thresholding for knowledge-based landslide detection by object-based image analysis [J]. IEEE Transactions on Geoence & Remote Sensing, 2011, 49(12): 4928-4943. [3] YIN H, PFLUGMACHER D, LI A, et al. Land use and land cover change in Inner Mongolia-understanding the effects of China's re-vegetation programs [J]. Remote Sensing of Environment, 2018, 204: 918-930. [4] AHMAD K, POGORELOV K, RIEGLER M, et al. Automatic detection of passable roads after floods in remote sensed and social media data [J]. Signal Processing: Image Communication, 2019, 74: 110-118. [5] 陈旭, 张军, 陈文伟, 等. 卷积网络深度学习算法与实例[J]. 广东工业大学学报, 2017, 34(6): 20-26. CHEN X, ZHANG J, CHEN W W, et al. Convolutional neural network algorithm and case [J]. Journal of Guangdong University of Technology, 2017, 34(6): 20-26. [6] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4): 640-651. [7] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[J]. arXiv preprint arXiv: 1511.07122, 2015. [8] ZHAO H S, SHI J P, QI X, et al. Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 2881-2890. [9] GADDE R, JAMPANI V, KIEFEL M, et al. Superpixel convolutional networks using bilateral inceptions[C]//European Conference on Computer Vision. Cham: Springer, 2016: 597-613. [10] HUANG G, LIU Z, MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 4700-4708. [11] GHIASI G, FOWLKES C. Laplacian pyramid reconstruction and refinement for semantic segmentation[C]// European Conference on Computer Vision. Cham: Springer, 2016: 519-534. [12] LIN G, MILAN A, SHEN C, et al. Refinenet: multi-path refinement networks for high-resolution semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 1925-1934. [13] PENG C, ZHANG X, YU G, et al. Large kernel matters-improve semantic segmentation by global convolutional network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 4353-4361. [14] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848. [15] SHERRAH J. Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery[J]. arXiv preprint arXiv: 1606.02585, 2016. [16] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer, 2015: 234-241. [17] YU Z, FENG C, LIU M Y, et al. Casenet: deep category-aware semantic edge detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 5964-5973. [18] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580-587. [19] HARIHARAN B, ARBELÁEZ P, GIRSHICK R, et al. Simultaneous detection and segmentation[C] //European Conference on Computer Vision. Zurich: Springer, 2014: 297-312. [20] NOH H, HONG S, HAN B. Learning deconvolution network for semantic segmentation[C] //Proceedings of the IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1520-1528. [21] ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//European Conference on Computer Vision. Zurich: Springer, 2014: 818-833. [22] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv preprint arXiv: 1706.05587, 2017. [23] ZHENG S, JAYASUMANA S, ROMERAPAREDES B, et al. Conditional random fields as recurrent neural networks[C]// Proceedings of the IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1529-1537. [24] LIN G, SHEN C, VAN DEN HENGEL A, et al. Efficient piecewise training of deep structured models for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 3194-3203. [25] JAMPANI V, KIEFEL M, GEHLER P V. Learning sparse high dimensional filters: image filtering, dense CRFs and bilateral neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 4452-4461. [26] POHLEN T, HERMANS A, MATHIAS M, et al. Full-resolution residual networks for semantic segmentation in street scenes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4151-4160. [27] PRASAD M, ZISSERMAN A, FITZGIBBON A W, et al. Learning class-specific edges for object detection and segmentation [J]. Lecture Notes in Computer Science, 2006, 4338: 94-10 5. [28] BERTASIUS G, SHI J, TORRESANI L. High-for-low and low-for-high: efficient boundary detection from deep object features and its applications to high-level vision[C]// Proceedings of the IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 504-512. [29] BERTASIUS G, SHI J, TORRESANI L. Semantic segmentation with boundary neural fields[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 3602-3610. [30] XIE S, TU Z. Holistically-nested edge detection [J]. International Journal of Computer Vision, 2015, 125(1-3): 3-18. [31] KENDALL A, GAL Y, CIPOLLA R. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7482-7491. [32] MISRA I, SHRIVASTAVA A, GUPTA A, et al. Cross-stitch networks for multi-task learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 3994-4003. [33] BADRINARAYANAN V, KENDALL A, CIPOLLA R. Segnet: a deep convolutional encoder-decoder architecture for image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. [34] CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision (ECCV). Glasgow: Springer, 2018: 801-818. [35] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv: 1409.1556, 2014. [36] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. [37] ACUNA D, KAR A, FIDLER S. Devil is in the edges: learning semantic boundaries from noisy annotations[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 11075-11083. [38] YU Z, LIU W, ZOU Y, et al. Simultaneous edge alignment and learning[C]//Proceedings of the European Conference on Computer Vision (ECCV). Glasgow: Springer, 2018: 388-404. [39] TAKIKAWA T, ACUNA D, JAMPANI V, et al. Gated-SCNN: gated shape CNNs for semantic segmentation[C]//Proceedings of the IEEE International Conference on Computer Vision. Seoul: IEEE, 2019: 5229-5238. |
[1] | 谢岩, 刘广聪. 基于编解码器模型的车道识别与车辆检测算法[J]. 广东工业大学学报, 2019, 36(04): 36-41. |
[2] | 何春,冯桑,陆晓,陈小龙. 形态学在交通标志边缘检测中的应用研究[J]. 广东工业大学学报, 2013, 30(3): 101-104. |
[3] | 刘立程;. 改进的基于形态学梯度法的车辆图像边缘检测方法[J]. 广东工业大学学报, 2007, 24(2): 84-86. |
[4] | 曹晓均; 潘保昌; 郑胜林; 甘艳芬; . 基于特征图像方法的运动物体检测[J]. 广东工业大学学报, 2007, 24(2): 87-89. |
[5] | 刘立程; . 图像聚类分析法用于汽车图像边缘的检测[J]. 广东工业大学学报, 2006, 23(2): 69-73. |
|