广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (01): 78-84.doi: 10.12052/gdutxb.200178

• 综合研究 • 上一篇    下一篇

轻型农用运输AGV的设计与分段模糊控制研究

李诀1,2, 邹大鹏1, 王高杰2, 任勇3   

  1. 1. 广东工业大学 机电工程学院,广东 广州 510006;
    2. 广东顺德创新设计研究院,广东 佛山 528000;
    3. 广州柏创机电设备有限公司,广东 广州 511450
  • 收稿日期:2020-12-30 发布日期:2022-01-20
  • 通信作者: 王高杰(1981-),男,硕士,主要研究方向为物联网与人工智能,E-mail:67021603@qq.com
  • 作者简介:李诀(1994-),男,硕士研究生,主要研究方向为单片机开发、AGV控制系统的设计,E-mail:978640059@qq.com
  • 基金资助:
    广东省科技计划项目(2017A010102012);广东省科技特派员企业项目GDKTP2020058900

A Design of AGV for Miniature Agricultural Transportation and Research on Piecewise Fuzzy Control

Li Jue1,2, Zou Da-peng1, Wang Gao-jie2, Ren Yong3   

  1. 1. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China;
    2. Guangdong Shunde Innovative Design Institute, Foshan 528000, China;
    3. Guangzhou Baichuang Electromechanical Equipment Co., Ltd., Guangzhou 511450, China
  • Received:2020-12-30 Published:2022-01-20

摘要: 农用运输自动导引车(Automatic Guided Vehicle, AGV), 作为农业高效、绿色、自动化运输的机械设备, 以其低成本、轻型化的设计, 成为现代农业机械化的一个重要发展方向。为此, 针对农业大棚环境, 设计一款基于磁导航的农用运输AGV。对该AGV的运载力进行核算, 确定其工作能力, 结合设计的磁导航模块, 对AGV进行了运动学建模。应用模糊PID控制算法, 对AGV的驱动速度进行仿真与实验, 结果表明AGV能够在4 s内完成速度的控制响应, 并最终做到相对稳定运行, 速度误差小于5%。设计分段模糊PID控制算法, 对AGV的循迹导引进行仿真与实验, 结果表明在不同驱动速度下AGV都能够调节与导航磁条的相对位置误差。稳定运行时, 其相对位置误差保持在±7.5 mm以内。

关键词: 自动导引车, 磁导航, PID, 模糊控制, 农用运输

Abstract: Agricultural transport automatic guided vehicle (AGV), as a high-efficiency, green, automatic transport machinery and equipment, with its low-cost, miniature design, has become an important development direction of modern agricultural mechanization. In view of the agricultural greenhouse environment, an AGV for agricultural transportation based on magnetic navigation is designed. Firstly, the carrying capacity of the AGV is calculated to determine its working capacity. Then, combined with the designed magnetic navigation module, the kinematics model of the AGV is built. The driving speed of the AGV is simulated and tested by using fuzzy PID control algorithm, and the results show that the AGV can complete the speed control response within 4 s, and finally achieve relatively stable operation, with the speed error less than 5%. Finally, the piecewise fuzzy PID control algorithm is designed to simulate and experiment the tracking guidance of AGV, and the results show that the relative position error between AGV and navigation magnetic stripe can be adjusted under different driving speeds, and the relative position error can be kept within ±7.5 mm when AGV runs stably.

Key words: automatic guided vehicle (AGV), magnetic navigation, PID, fuzzy control, agricultural transportation

中图分类号: 

  • S24
[1] YU S Y, YE C L, LIU H J, et al. Development of an omnidirectional automated guided vehicle with MY3 wheels [J]. Perspectives in Science, 2016, 7: 364-368.
[2] 张辰贝西, 黄志球. 自动导航车(AGV)发展综述[J]. 中国制造业信息化, 2010, 39(1): 53-59.
ZHANG C B X, HUANG Z Q. Evolution summarization of automated guided vehicles (AGV) [J]. Machine Design and Manufacturing Engineering, 2010, 39(1): 53-59.
[3] 刘明实, 胡祎骁, 罗心皓. 基于农业运输的综合问题分析[J]. 经贸实践, 2018(17): 38.
LIU M S, HU Y X, LUO X H. Analysis of comprehensive problems based on agricultural transportation [J]. Economic & Trade, 2018(17): 38.
[4] 孙晓. 轻型电动农用运输机械发展现状和趋势[J]. 江苏农机化, 2012(4): 26-27.
SUN X. Development status and trend of light electric agricultural transport machinery [J]. Jiangsu Agricultural Mechanization, 2012(4): 26-27.
[5] 邓文博, 万红珍. 科技创新、农业机械化对广东农业经济增长的影响[J]. 五邑大学学报(社会科学版), 2020, 22(4): 67-71.
DENG W B, WAN H Z. The impact of science and technology innovation and agricultural mechanization on agricultural economic growth in Guangdong province [J]. Journal of Wuyi University (Social Sciences Edition), 2020, 22(4): 67-71.
[6] 陈之群, 曹雪, 胡晓丽, 等. 大棚马铃薯套种茄子3次收获高效栽培技术[J]. 中国蔬菜, 2018(5): 101-103.
CHEN Z Q, CAO X, HU X L, et al. High efficient cultivation techniques of potato interplanting with eggplant in greenhouse [J]. China Vegetables, 2018(5): 101-103.
[7] TAKESHIMA H, HATZENBUEHLER P L, EDEH H O. Effects of agricultural mechanization on economies of scope in crop production in Nigeria [J]. Agricultural Systems, 2020, 177: 102691.
[8] 蒲宝山, 陈永快, 王涛, 等. 自动导航车技术发展状况及在农业领域的应用及前景展望[J]. 江苏农业科学, 2020, 48(1): 61-65.
PU B S, CHEN Y K, WANG T, et al. Development status of automated guided vehicle technology and its application and prospect in agriculture [J]. Jiangsu Agricultural Sciences, 2020, 48(1): 61-65.
[9] BELL J, MACDONALD B A, AHN H S, et al. An analysis of automated guided vehicle standards to inform the development of mobile orchard robots [J]. IFAC-PapersOnLine, 2016, 49(16): 475-480.
[10] 赵晨宇, 陈息坤. 差速转向农业专用AGV小车的设计与模糊控制研究[J]. 农机化研究, 2016, 38(11): 123-127.
ZHAO C Y, CHEN X K. Study on fuzzy control of an agricultural dedicated AGV with differential steering [J]. Journal of Agricultural Mechanization Research, 2016, 38(11): 123-127.
[11] 贺坤. 基于航姿与磁导航传感器融合的四轮转向AGV路径跟踪研究[D]. 镇江: 江苏大学, 2018.
[12] 罗远杰, 陈息坤, 高艳霞. 现代农业自动化AGV小车的设计与模糊控制研究[J]. 工业控制计算机, 2015, 28(12): 68-71.
LUO Y J, CHEN X K, GAO Y X. Study on fuzzy control of AGV used in automation of modern agriculture [J]. Industrial Control Computer, 2015, 28(12): 68-71.
[13] KOSTOV M, KOSTOVA V, MARKOSKA R. AGV guidance system simulations with a programmable robotics kit [J]. International Journal of Reasoning-based Intelligent Systems, 2015, 7(1/2): 42-46.
[14] 尚婕, 姜文刚, 蔡蓝图. 差速转向的农用自动引导小车控制系统设计[J]. 江苏科技大学学报(自然科学版), 2011, 25(5): 453-456.
SHANG J, JIANG W G, CAI L T. Design of control system of agricultural automatic guided vehicle with differential steering [J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2011, 25(5): 453-456.
[15] 田丽芳. 基于纯滚动转向的采摘机器人轮式AGV系统设计与试验研究[D]. 镇江: 江苏大学, 2016.
[16] 王锋. 丘陵山地果园动力底盘的坡地通过性研究[D]. 重庆: 西南大学, 2020.
[17] 肖全. 面向3C自动化生产线的AGV结构设计与控制研究[D]. 广州: 广东工业大学, 2018.
[18] 鲍金. 基于PID算法的双轮差动式移动机器人定位和导航研究[D]. 沈阳: 东北大学, 2008.
[19] 叶甲秋. 自动导向小车(AGV)驱动系统辨识与动态特性分析[D]. 南京: 南京航空航天大学, 2010.
[20] ZHANG J Y. PID control realization of drying system of the finishing line based on MCGS and PLC[C]//2020 2nd International Conference on Applied Machine Learning and Data Science (ICAMLDS 2020). Chengdu: IOP Publishing, 2020, 1629: 012015.
[21] LUO K. Investigation on machinery control system based on fuzzy PID control technology [J]. Applied Mechanics and Materials, 2012, 1999: 130-134.
[22] 马广志, 吴伟, 党国栋. 基于Simulink的履带机器人路径追踪仿真[J]. 机械研究与应用, 2017, 30(6): 77-78.
MA G Z, WU W, DANG G D. Simulation of tracked robot tracking path based on the simulink [J]. Mechanical Research & Application, 2017, 30(6): 77-78.
[1] 郭心德, 丁宏强. 离散制造智能工厂场景的AGV路径规划方法[J]. 广东工业大学学报, 2021, 38(06): 70-76.
[2] 曾振华, 郑汇峰, 祝玉杰, 罗志勇. 多旋翼无人机自主精准降落的控制系统研究[J]. 广东工业大学学报, 2020, 37(01): 87-94.
[3] 曾繁武, 熊锐, 吴坚, 杜锡滔, 朱敏思. 能量平衡模型的涡轮增压器控制[J]. 广东工业大学学报, 2018, 35(01): 56-60.
[4] 吴平景, 王银河, 陈浩广. 基于改进递推预测误差神经网络算法的极点配置PID控制方法[J]. 广东工业大学学报, 2015, 32(04): 112-117.
[5] 杜军特, 李扬. 参数自整定模糊PID控制方法及其在漆包机中的应用[J]. 广东工业大学学报, 2014, 31(2): 58-63.
[6] 熊家秦,熊锐,吴坚,陈东兴,李鑫. 增量式PID怠速控制策略在发动机上的应用[J]. 广东工业大学学报, 2013, 30(3): 109-111.
[7] 高子林,王银河,石炳杰. 基于自适应模糊逻辑系统的一类非线性系统跟踪控制设计[J]. 广东工业大学学报, 2012, 29(4): 77-81.
[8] 李岚,金朝永. 一类多变量不确定非线性系统的自适应模糊监督控制[J]. 广东工业大学学报, 2012, 29(2): 79-84.
[9] 卢萍, 金朝永. 收敛速度;误差迭代;神经网络;仿真; PID控制[J]. 广东工业大学学报, 2011, 28(4): 55-58.
[10] 李凌宇, 郭贵法, 许锦标. 基于模拟退火遗传算法的PID参数整定与优化[J]. 广东工业大学学报, 2010, 27(2): 80-83.
[11] 叶玮琼; 余永权;. 液压伺服系统中模糊-滑模控制器的设计及应用[J]. 广东工业大学学报, 2008, 25(2): 74-77.
[12] 谭远强; 王福龙; 李伶俐; . 基于模糊控制的快速控制算法[J]. 广东工业大学学报, 2008, 25(2): 51-53.
[13] 刘洋; 王钦若; . 基于内模控制的PID参数整定及仿真[J]. 广东工业大学学报, 2008, 25(1): 66-68.
[14] 刘娜; 汪仁煌; 龚雄文; 庞然; . 薄膜透气性测试中基于半导体的恒温控制[J]. 广东工业大学学报, 2008, 25(1): 69-72.
[15] 黄英杰; 陈玮; 邓则名; 王钦若; 李军; 杜玉晓;. 钢板彩涂过程中张力控制系统的研究[J]. 广东工业大学学报, 2006, 23(4): 45-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!