广东工业大学学报 ›› 2024, Vol. 41 ›› Issue (01): 11-18.doi: 10.12052/gdutxb.230111
王振友, 黄亚婷
Wang Zhen-you, Huang Ya-ting
摘要: 肿瘤转移是肿瘤发展过程中的重要环节,也是导致癌症恶化和治疗失败的主要原因之一。以肿瘤转移为背景,本文研究基于肿瘤与细胞外基质(Extracellular Matrix,ECM)相互作用的肿瘤淋巴管生成模型。首先用数学语言梳理肿瘤淋巴管生成的生物原理,其次做出假设,建立数学模型并进行定性分析。主要通过逼近方法、偏微分方程定性理论和Banach不动点定理证明模型局部解的存在唯一性,以及借助局部解的正则性估计和嵌入不等式证明模型整体解的存在唯一性。最后利用差分数值方法进行数值模拟来说明模型的可靠性与准确性。本文对深入理解肿瘤转移机制、指导癌症治疗以及推动相关研究具有重要意义。
中图分类号:
[1] DILLEKS H, ROGERS M S, STRAUME O. Are 90% of deaths from cancer caused by metastases? [J]. Cancer Medicine, 2019, 8(12): 5574-5576. [2] LIU P, DING P, SUN C, et al. Lymphangiogenesis in gastric cancer: function and mechanism [J]. European Journal of Medical Research, 2023, 28(1): 405. [3] ALEJANDRA G L, TATIANA V, PETROVA. Development and aging of the lymphatic vascular system [J]. Advanced Drug Delivery Reviews, 2021, 169: 63-78. [4] YANG Y L, CAO Y H. The impact of VEGF on cancer metastasis and systemic disease [J]. Seminars in Cancer Biology, 2022, 86(3): 251-261. [5] KAI F B, DRAIN A P, WEAVER V M. The extracellular matrix modulates the metastatic Journey [J]. Developmental Cell, 2019, 49(3): 332-346. [6] LE X N, NILSSON M, GOLDMAN J, et al. Dual EGFR-VEGF pathway inhibition: a promising strategy for patients with EGFR-mutant NSCLC [J]. Journal of Thoracic Oncology, 2021, 16(2): 205-215. [7] LIU Y, CAO X T. Characteristics and significance of the pre-metastatic niche [J]. Cancer Cell, 2016, 30(5): 668-681. [8] QUINTERO-FABIÁN S, RODRIGO A, ECERRIL-VILLANUEVA, et al. Role of matrix metalloproteinases in angiogenesis and cancer [J]. Frontiers in Oncology, 2019, 9: 1307. [9] 周云, 卫雪梅. 一个具有Robin自由边界的双曲肿瘤生长模型解的定性分析[J]. 广东工业大学学报, 2021, 38(2): 60-65. ZHOU Y, WEI X M. A qualitative analysis of a hyperbolic tumor growth model with robin free boundary [J]. Journal of Guangdong University of Technology, 2021, 38(2): 60-65. [10] 梁小珍, 卫雪梅. 结肠癌细胞代谢模型解的存在性[J]. 广东工业大学学报, 2019, 36(5): 38-42. LIANG X Z, WEI X M. Existence of the solution to the metabolic model of colon cancer cells [J]. Journal of Guangdong University of Technology, 2019, 36(5): 38-42. [11] CUI S B. Analysis of a free boundary problem modeling tumor growth [J]. Acta Mathematica Sinica, 2005, 21(5): 1071-1082. [12] LADYZHENSKAYA O A, SOLONNIKOV V A, URAL'TSEVA N N. Linear and quasi-linear equations of parabolic type[M]. Translations of Mathematical Monographs. USA: Am Math Soc, 1968: 23. [13] FRIEDMAN A, LOLAS G. Analysis of a mathematical model of tumor lymphangiogenesis [J]. Mathematical Models & Methods in Applied Sciences, 2005, 15(1): 95-107. [14] WEI X, CUI S. Existence and uniqueness of global solutions for a mathematical model of antiangiogenesis in tumor growth [J]. Nonlinear Analysis:Real World Applications, 2008, 9(5): 1827-1836. [15] WEI X, GUO C. Global existence for a mathematical model of the immune response to cancer [J]. Nonlinear Analysis Real World Applications, 2010, 11(5): 3903-3911. [16] 王术. Sobolev空间与偏微分方程引论[M]. 北京: 科学出版社, 2009. [17] LAI X, FRIEDMAN A. Combination therapy for melanoma with braf/mek inhibitor and immune checkpoint inhibitor: a mathematical model [J]. BMC Systems Biology, 2017, 11(1): 70. |
[1] | 梁小珍, 卫雪梅. 结肠癌细胞代谢模型解的存在性[J]. 广东工业大学学报, 2019, 36(05): 38-42. |
[2] | 陈美癸, 卫雪梅. 视网膜氧分布与脑红蛋白作用模型解的存在唯一性[J]. 广东工业大学学报, 2018, 35(05): 45-50. |
[3] | 卢创业, 卫雪梅. 一个视网膜血管肿瘤数学模型整体解的存在唯一性[J]. 广东工业大学学报, 2016, 33(03): 70-75. |
[4] | 陆宇. 一类四阶边值问题解的存在性[J]. 广东工业大学学报, 2014, 31(2): 69-73. |
[5] | 陈学松; . 矩阵方程X+A~* F(X)A=Q解的存在性与扰动分析[J]. 广东工业大学学报, 2007, 24(03): 21-23. |
[6] | 卫雪梅; . 散度形式的非古典抛物方程解的存在唯一性[J]. 广东工业大学学报, 2005, 22(4): 111-116. |
[7] | 杨淑伶; . 一类反应扩散方程的整体吸引子[J]. 广东工业大学学报, 2005, 22(3): 113-115. |
[8] | 杨淑伶; . 一类反应扩散方程的整体解[J]. 广东工业大学学报, 2003, 20(2): 93-96. |
[9] | 梁锦鹏; . 具有二个奇点的Van der pol型方程的极限环[J]. 广东工业大学学报, 2000, 17(2): 96-100. |
[10] | 梁锦鹏; . 非线性方程的另一Филиппов定理[J]. 广东工业大学学报, 1999, 16(4): 83-86. |
[11] | 梁锦鹏; . 方程=φ(y)-F(x),=-g(x)的极限环唯一性定理[J]. 广东工业大学学报, 1998, 15(2): 115-118. |
[12] | 梁锦鹏. 方程(dx)/(dt)=φ(y)-F(x),(dy)/(dt)=-g(x)的极限环存在定理[J]. 广东工业大学学报, 1996, 13(4): 17-20. |
|